A polydrafter is proper if its cells conform to the polyiamond (triangle) grid, and extended if some do not. Here are the 13 didrafters, 6 proper and 7 extended:
Below I show how to make a minimal convex figure using copies of two didrafters, at least one of each. These solutions are not necessarily unique, nor are their tilings. If you find a solution with fewer tiles, or solve an unsolved case, please write.
See also Convex Figures with Didrafter Triplets.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | • | 3 | 2 | 3 | × | 7 | 3 | 8 | × | 2 | × | × | × |
2 | 3 | • | 4 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 5 | 4 |
3 | 2 | 4 | • | 3 | × | 8 | 2 | 6 | 57 | 2 | × | × | × |
4 | 3 | 2 | 3 | • | 2 | 2 | × | 6 | × | × | × | × | × |
5 | × | 2 | × | 2 | • | 4 | × | 6 | 6 | × | × | × | 90 |
6 | 7 | 2 | 8 | 2 | 4 | • | × | 48 | 9 | 8 | 5 | × | × |
7 | 3 | 3 | 2 | × | × | × | • | × | × | 4 | × | × | × |
8 | 8 | 3 | 6 | 6 | 6 | 48 | × | • | × | 2 | × | × | × |
9 | × | 3 | 57 | × | 6 | 9 | × | × | • | 2 | × | × | × |
10 | 2 | 3 | 2 | × | × | 8 | 4 | 2 | 2 | • | × | × | × |
11 | × | 3 | × | × | × | 5 | × | × | × | × | • | × | × |
12 | × | 5 | × | × | × | × | × | × | × | × | × | • | × |
13 | × | 4 | × | × | 90 | × | × | × | × | × | × | × | • |
Last revised 2020-06-13.