Pentiamond-Hexiamond Oddities

A polyiamond oddity is a figure with binary symmetry formed by an odd number of copies of a polyiamond. Here are the minimal known oddities for pentiamond-hexiamond pairs.

In Tetromino-Pentomino Oddities I used figures with an odd number of cells. Unlike polyominoes, a polyiamond with full symmetry cannot have an odd number of cells. Here I use figures with an odd number of tiles instead.

Johann Schwenke and Carl Schwenke contributed many solutions.

[ Basic Solutions | Holeless Variants ]

Basic Solutions

5I+6A : 175J+6A : 175Q+6A : 135U+6A : 7
5I+6E : 155J+6E : 115Q+6E : 135U+6E : 15
5I+6F : 95J+6F : 95Q+6F : 135U+6F : 9
5I+6H : 95J+6H : 95Q+6H : 135U+6H : 9
5I+6I : 155J+6I : 95Q+6I : 95U+6I : 15
5I+6L : 95J+6L : 95Q+6L : 95U+6L : 15
5I+6O : 95J+6O : 95Q+6O : 75U+6O : 7
5I+6P : 155J+6P : 95Q+6P : 115U+6P : 15
5I+6S : 155J+6S : 115Q+6S : 95U+6S : 19
5I+6U : 155J+6U : 95Q+6U : 95U+6U : 9
5I+6V : 95J+6V : 95Q+6V : 95U+6V : 9
5I+6X : 115J+6X : 155Q+6X : 135U+6X : 9

Holeless Variants

Unsolved

Last revised 2021-11-23.


Back to Polyform Oddities < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]