It has long been known that only four pentominoes can tile rectangles:
For other rectangles that these pentominoes tile, see Mike Reid's Rectifiable Polyomino Page.
On Balanced Three-Pentomino Rectangles I study the related problem of tiling some rectangle with three pentominoes, using the same areas of each. Here I study the same problem, using the pentominoes in various sizes. If you find a solution better than one of mine, or solve an unsolved case, please write!
Bryce Herdt improved on some of my solutions.
See also Scaled Two-Pentomino Balanced Rectangles.
5F+5I+5L 6 | 5F+5I+5N 16 | 5F+5I+5P 9 | 5F+5I+5T 13 | 5F+5I+5U 6 |
---|---|---|---|---|
5F+5I+5V 6 | 5F+5I+5W 15 | 5F+5I+5X 27 | 5F+5I+5Y 12 | 5F+5I+5Z 15 |
5F+5L+5N 6 | 5F+5L+5P 6 | 5F+5L+5T 6 | 5F+5L+5U 6 | 5F+5L+5V 6 |
5F+5L+5W 6 | 5F+5L+5X 30 | 5F+5L+5Y 9 | 5F+5L+5Z 12 | 5F+5N+5P 12 |
5F+5N+5T 18 | 5F+5N+5U 6 | 5F+5N+5V 6 | 5F+5N+5W × | 5F+5N+5X × |
5F+5N+5Y 12 | 5F+5N+5Z × | 5F+5P+5T 12 | 5F+5P+5U 3 | 5F+5P+5V 6 |
5F+5P+5W 12 | 5F+5P+5X 30 | 5F+5P+5Y 6 | 5F+5P+5Z 18 | 5F+5T+5U 18 |
5F+5T+5V 24 | 5F+5T+5W 24 | 5F+5T+5X × | 5F+5T+5Y 6 | 5F+5T+5Z × |
5F+5U+5V 9 | 5F+5U+5W 6 | 5F+5U+5X 35 | 5F+5U+5Y 12 | 5F+5U+5Z 19 |
5F+5V+5W 18 | 5F+5V+5X 57 | 5F+5V+5Y 12 | 5F+5V+5Z 12 | 5F+5W+5X × |
5F+5W+5Y 12 | 5F+5W+5Z × | 5F+5X+5Y 24 | 5F+5X+5Z × | 5F+5Y+5Z 12 |
5I+5L+5N 6 | 5I+5L+5P 6 | 5I+5L+5T 12 | 5I+5L+5U 6 | 5I+5L+5V 6 |
5I+5L+5W 6 | 5I+5L+5X 20 | 5I+5L+5Y 6 | 5I+5L+5Z 9 | 5I+5N+5P 6 |
5I+5N+5T 6 | 5I+5N+5U 6 | 5I+5N+5V 6 | 5I+5N+5W 15 | 5I+5N+5X 30 |
5I+5N+5Y 6 | 5I+5N+5Z 12 | 5I+5P+5T 6 | 5I+5P+5U 6 | 5I+5P+5V 6 |
5I+5P+5W 9 | 5I+5P+5X 15 | 5I+5P+5Y 6 | 5I+5P+5Z 6 | 5I+5T+5U 13 |
5I+5T+5V 9 | 5I+5T+5W 12 | 5I+5T+5X 20 | 5I+5T+5Y 6 | 5I+5T+5Z 13 |
5I+5U+5V 9 | 5I+5U+5W 15 | 5I+5U+5X 15 | 5I+5U+5Y 6 | 5I+5U+5Z 15 |
5I+5V+5W 12 | 5I+5V+5X 21 | 5I+5V+5Y 6 | 5I+5V+5Z 6 | 5I+5W+5X 21 |
5I+5W+5Y 6 | 5I+5W+5Z 15 | 5I+5X+5Y 18 | 5I+5X+5Z 21 | 5I+5Y+5Z 12 |
5L+5N+5P 6 | 5L+5N+5T 12 | 5L+5N+5U 6 | 5L+5N+5V 3 | 5L+5N+5W 6 |
5L+5N+5X 9 | 5L+5N+5Y 6 | 5L+5N+5Z 6 | 5L+5P+5T 6 | 5L+5P+5U 6 |
5L+5P+5V 3 | 5L+5P+5W 6 | 5L+5P+5X 9 | 5L+5P+5Y 6 | 5L+5P+5Z 6 |
5L+5T+5U 12 | 5L+5T+5V 6 | 5L+5T+5W 17 | 5L+5T+5X 6 | 5L+5T+5Y 3 |
5L+5T+5Z 12 | 5L+5U+5V 9 | 5L+5U+5W 6 | 5L+5U+5X 12 | 5L+5U+5Y 6 |
5L+5U+5Z 12 | 5L+5V+5W 12 | 5L+5V+5X 9 | 5L+5V+5Y 9 | 5L+5V+5Z 6 |
5L+5W+5X 36 | 5L+5W+5Y 6 | 5L+5W+5Z 18 | 5L+5X+5Y 18 | 5L+5X+5Z 33 |
5L+5Y+5Z 6 | 5N+5P+5T 6 | 5N+5P+5U 3 | 5N+5P+5V 6 | 5N+5P+5W 12 |
5N+5P+5X 18 | 5N+5P+5Y 6 | 5N+5P+5Z 6 | 5N+5T+5U 12 | 5N+5T+5V 9 |
5N+5T+5W 12 | 5N+5T+5X 36 | 5N+5T+5Y 6 | 5N+5T+5Z 24 | 5N+5U+5V 6 |
5N+5U+5W 24 | 5N+5U+5X 18 | 5N+5U+5Y 6 | 5N+5U+5Z 6 | 5N+5V+5W 6 |
5N+5V+5X 55 | 5N+5V+5Y 12 | 5N+5V+5Z 6 | 5N+5W+5X × | 5N+5W+5Y 12 |
5N+5W+5Z × | 5N+5X+5Y 15 | 5N+5X+5Z × | 5N+5Y+5Z 12 | 5P+5T+5U 6 |
5P+5T+5V 6 | 5P+5T+5W 6 | 5P+5T+5X 12 | 5P+5T+5Y 6 | 5P+5T+5Z 12 |
5P+5U+5V 3 | 5P+5U+5W 12 | 5P+5U+5X 6 | 5P+5U+5Y 3 | 5P+5U+5Z 6 |
5P+5V+5W 6 | 5P+5V+5X 18 | 5P+5V+5Y 6 | 5P+5V+5Z 6 | 5P+5W+5X 30 |
5P+5W+5Y 6 | 5P+5W+5Z 6 | 5P+5X+5Y 12 | 5P+5X+5Z 33 | 5P+5Y+5Z 6 |
5T+5U+5V 12 | 5T+5U+5W 18 | 5T+5U+5X 48 | 5T+5U+5Y 6 | 5T+5U+5Z 36 |
5T+5V+5W 24 | 5T+5V+5X 121 | 5T+5V+5Y 12 | 5T+5V+5Z 21 | 5T+5W+5X 54 |
Click here | ||||
5T+5W+5Y 6 | 5T+5W+5Z 30 | 5T+5X+5Y 21 | 5T+5X+5Z × | 5T+5Y+5Z 12 |
5U+5V+5W 47 | 5U+5V+5X 57 | 5U+5V+5Y 9 | 5U+5V+5Z 9 | 5U+5W+5X 60 |
Click here | Click here | |||
5U+5W+5Y 6 | 5U+5W+5Z 18 | 5U+5X+5Y 6 | 5U+5X+5Z 63 | 5U+5Y+5Z 12 |
Click here | ||||
5V+5W+5X 156 | 5V+5W+5Y 12 | 5V+5W+5Z 21 | 5V+5X+5Y 42 | 5V+5X+5Z 9 |
5V+5Y+5Z 6 | 5W+5X+5Y 30 | 5W+5X+5Z × | 5W+5Y+5Z 12 | 5X+5Y+5Z 24 |
Last revised 2021-06-18.