Order-7 minimal solution |
All basic solutions for minimum sum prime number magic stars. |
Order-7 consecutive primes |
All basic solutions for consecutive prime number magic stars. |
Order-8 minimal solution |
All basic solutions for minimum sum prime number magic stars. |
Order-8 consecutive primes |
All basic solutions for consecutive prime number magic stars. |
This page deals with orders 7 and 8 prime magic stars. A preceding page, Prime Magic Stars, shows prime star solutions for orders 5 and 6.
There are two types of solutions to consider.
The solution with the lowest magic constant but with missing primes in
the number set used.
The solution using the smallest set of consecutive prime numbers.
In each case there will be multiple solutions (usually) obtained from the same set of
prime numbers.
Because we are concerned on this page with 2 orders (7 and 8), and there are 2 patterns per order, there are a total of 8 sets of solutions. Note that only the basic solutions are presented here. Each has 14 aspects for order-7 and 16 aspects for order-8. Refer to my Magic Stars Definitions page for an explanation.
Notice that in all cases, if a set of prime numbers produce solutions for pattern A or B, it will also produce solutions for the other pattern. However, the number of solutions for each pattern may not be identical.
These solutions were obtained by an exhaustive computer
search. With an investigation based only on searching, there is always the danger that a
mistake exists in the search algorithm, resulting in some solutions being missed.
I can only say that my algorithm has been proved accurate for finding the normal basic
solutions for orders 5, 6, 7 and 8 and for the solutions for prime magic stars of order-5,
as confirmed by other researchers.
I am most happy to hear from anyone obtaining results differing from those presented here.
In this table of solutions, "Pk" and "Val" columns
show the totals for the peaks and the valleys. The totals in bold are prime numbers. The
"Remarks" column indicates the prime number(s) missing from the sequence of
primes used.
Shown are all the basic solutions with magic sums of 96 (the minimum possible) or 100.
# | A | b | c | D | e | f | G | h | i | J | k | L | M | N | Sum | Pk | Val | Remarks - Pattern 7A |
1 | 3 | 5 | 41 | 47 | 7 | 13 | 29 | 19 | 17 | 31 | 23 | 37 | 11 | 53 | 96 | 211 | 125 | Primes 3 to 53. No # 43 |
2 | 3 | 5 | 47 | 41 | 7 | 19 | 29 | 13 | 17 | 37 | 23 | 31 | 11 | 53 | 96 | 205 | 131 | |
3 | 3 | 11 | 53 | 29 | 17 | 13 | 37 | 23 | 5 | 31 | 47 | 7 | 19 | 41 | 96 | 167 | 169 | |
4 | 7 | 3 | 19 | 71 | 13 | 5 | 11 | 17 | 29 | 43 | 23 | 31 | 37 | 41 | 100 | 241 | 109 | Primes 3 to 71. No # 47, 53, 59, 61, 67 |
5 | 3 | 19 | 17 | 61 | 11 | 23 | 5 | 29 | 53 | 13 | 37 | 31 | 41 | 7 | 100 | 161 | 189 | 3 to 61. No 43, 47, 59 |
6 | 5 | 13 | 53 | 29 | 23 | 11 | 37 | 41 | 3 | 19 | 61 | 7 | 17 | 31 | 100 | 145 | 205 | |
7 | 19 | 13 | 7 | 61 | 3 | 5 | 31 | 17 | 29 | 23 | 11 | 53 | 37 | 41 | 100 | 246 | 107 | |
8 | 7 | 3 | 37 | 53 | 13 | 5 | 29 | 17 | 11 | 43 | 23 | 31 | 19 | 59 | 100 | 241 | 109 | 3 to 59. No # 41, 47 |
9 | 3 | 7 | 29 | 61 | 5 | 23 | 11 | 17 | 41 | 31 | 43 | 19 | 47 | 13 | 100 | 185 | 165 | 3 to 61. No # 37, 53, 59 |
10 | 3 | 19 | 17 | 61 | 5 | 11 | 23 | 29 | 41 | 7 | 43 | 31 | 47 | 13 | 100 | 185 | 165 | |
11 | 3 | 19 | 17 | 61 | 23 | 11 | 5 | 47 | 41 | 7 | 43 | 31 | 29 | 13 | 100 | 149 | 201 | |
12 | 7 | 3 | 29 | 61 | 11 | 5 | 23 | 17 | 19 | 41 | 43 | 13 | 47 | 31 | 100 | 223 | 127 |
In this table of minimum solutions, "Pk" and "Val"
columns show the totals for the peaks and the valleys. The totals in bold are prime
numbers. The "Remarks" column indicates the prime number(s) missing from the
sequence of primes used.
Shown are all the basic solutions with magic sums of 96 (the minimum possible) or 100.
Notice that there are 13 solutions for pattern 7B but only 12 for 7A.
# | A | b | c | D | e | f | G | h | i | J | k | L | M | N | Sum | Pk | Val | Remarks - Pat. 7B |
1 | 3 | 5 | 47 | 41 | 13 | 23 | 19 | 53 | 17 | 7 | 11 | 31 | 37 | 29 | 96 | 167 | 169 | Primes 3 to 53. No 43 |
2 | 3 | 17 | 23 | 53 | 13 | 19 | 11 | 41 | 7 | 37 | 5 | 31 | 29 | 47 | 96 | 211 | 125 | |
3 | 3 | 17 | 23 | 53 | 19 | 13 | 11 | 47 | 7 | 31 | 5 | 37 | 29 | 41 | 96 | 205 | 131 | |
4 | 7 | 19 | 3 | 71 | 5 | 13 | 11 | 29 | 17 | 43 | 23 | 31 | 37 | 41 | 100 | 241 | 109 | Primes 3 to 71. No 47, 53, 59, 61 |
5 | 3 | 17 | 19 | 61 | 23 | 11 | 5 | 53 | 29 | 13 | 37 | 31 | 41 | 7 | 100 | 161 | 189 | 3 to 61. No 43, 47, 59 |
6 | 5 | 3 | 61 | 31 | 11 | 41 | 17 | 53 | 23 | 7 | 13 | 19 | 37 | 29 | 100 | 145 | 205 | |
7 | 19 | 7 | 13 | 61 | 5 | 3 | 31 | 29 | 17 | 23 | 11 | 53 | 37 | 41 | 100 | 246 | 104 | |
8 | 7 | 11 | 23 | 59 | 5 | 17 | 19 | 37 | 13 | 31 | 3 | 43 | 29 | 53 | 100 | 241 | 109 | 3 to 59. No 41, 47 |
9 | 7 | 29 | 5 | 59 | 17 | 11 | 13 | 31 | 3 | 53 | 19 | 23 | 37 | 43 | 100 | 235 | 105 | |
10 | 3 | 17 | 19 | 61 | 11 | 5 | 23 | 41 | 29 | 7 | 43 | 31 | 47 | 13 | 100 | 185 | 165 | 3 to 61. No 37, 53, 59 |
11 | 3 | 17 | 19 | 61 | 11 | 23 | 5 | 41 | 47 | 7 | 43 | 31 | 29 | 13 | 100 | 149 | 201 | |
12 | 3 | 29 | 7 | 61 | 23 | 5 | 11 | 41 | 17 | 31 | 43 | 19 | 47 | 13 | 100 | 185 | 165 | |
13 | 7 | 19 | 43 | 31 | 5 | 17 | 47 | 29 | 11 | 13 | 3 | 41 | 23 | 61 | 100 | 223 | 127 |
With these small primes, a relatively large percentage of peak and valley totals are prime. However, with the slightly higher prime numbers in the consecutive series, the totals that are prime are a much smaller percentage. And of course, for order-8, no peak or valley totals can be prime, because all these totals must be even numbers.
Peaks and valley totals that are prime. |
|||
# of Solutions | Peaks | Valleys | |
Minimal sum - Pattern A | 12 | 6 | 4 |
Pattern B | 13 | 6 | 4 |
Consecutive sum - Pattern A | 10 | 0 | 2 |
Pattern B | 14 | 0 | 2 |
Order-7A using consecutive primes
In these consecutive primes table of solutions, I have chosen not to include the "Pk" and "Val" columns because, of a total of 24 solutions, no peak totals are prime and only 4 valley totals. Notice that there are 10 pattern A solutions and 14 pattern B solutions in these 3 sets of consecutive primes. These are all the basic solutions possible for series of 14 consecutive prime numbers starting with 23, 307 and 409.
# | A | b | c | D | e | f | G | h | i | J | k | L | M | N | Sum | Primes used |
1 | 23 | 31 | 71 | 79 | 29 | 53 | 43 | 41 | 61 | 59 | 47 | 67 | 37 | 73 | 204 | 23 to 79 |
2 | 23 | 31 | 71 | 79 | 37 | 59 | 29 | 61 | 67 | 47 | 73 | 53 | 43 | 41 | 204 | |
3 | 23 | 37 | 71 | 73 | 31 | 53 | 47 | 67 | 61 | 29 | 79 | 59 | 43 | 41 | 204 | |
4 | 23 | 41 | 67 | 73 | 29 | 31 | 71 | 53 | 43 | 37 | 79 | 47 | 61 | 59 | 204 | |
5 | 23 | 41 | 67 | 73 | 29 | 59 | 43 | 53 | 71 | 37 | 79 | 47 | 61 | 31 | 204 | |
6 | 29 | 23 | 79 | 73 | 41 | 43 | 47 | 59 | 37 | 61 | 67 | 53 | 31 | 71 | 204 | |
7 | 29 | 43 | 59 | 73 | 61 | 23 | 47 | 79 | 37 | 41 | 67 | 53 | 31 | 71 | 204 | |
8 | 317 | 337 | 401 | 397 | 347 | 359 | 349 | 383 | 367 | 353 | 389 | 373 | 331 | 379 | 1452 | 317 to 401 |
9 | 449 | 419 | 433 | 487 | 409 | 431 | 461 | 421 | 443 | 463 | 439 | 467 | 479 | 457 | 1788 | 409 to 487 |
10 | 449 | 419 | 433 | 487 | 431 | 409 | 461 | 443 | 421 | 463 | 439 | 467 | 45 | 479 | 1788 |
Order-7B using consecutive primes
# | A | b | c | D | e | f | G | h | i | J | k | L | M | N | Sum | Primes used |
1 | 23 | 41 | 61 | 79 | 29 | 37 | 59 | 67 | 31 | 47 | 43 | 53 | 73 | 71 | 204 | 23 to 79 |
2 | 23 | 43 | 79 | 59 | 31 | 53 | 61 | 67 | 29 | 47 | 41 | 37 | 71 | 73 | 204 | |
3 | 23 | 61 | 41 | 79 | 53 | 29 | 43 | 71 | 31 | 59 | 37 | 67 | 47 | 73 | 204 | |
4 | 23 | 61 | 47 | 73 | 53 | 41 | 37 | 71 | 29 | 67 | 31 | 59 | 43 | 79 | 204 | |
5 | 23 | 61 | 79 | 41 | 53 | 67 | 43 | 71 | 31 | 59 | 37 | 29 | 47 | 73 | 204 | |
6 | 23 | 67 | 41 | 73 | 59 | 29 | 43 | 71 | 53 | 37 | 79 | 47 | 61 | 31 | 204 | |
7 | 23 | 67 | 73 | 41 | 59 | 61 | 43 | 71 | 37 | 53 | 31 | 47 | 29 | 79 | 204 | |
8 | 29 | 37 | 67 | 71 | 23 | 79 | 31 | 59 | 61 | 53 | 43 | 41 | 47 | 73 | 204 | |
9 | 29 | 37 | 67 | 71 | 43 | 59 | 31 | 79 | 41 | 53 | 23 | 61 | 47 | 73 | 204 | |
10 | 317 | 367 | 389 | 379 | 359 | 383 | 331 | 401 | 347 | 373 | 337 | 353 | 349 | 397 | 1452 | 317 to 401 |
11 | 317 | 379 | 373 | 383 | 367 | 353 | 349 | 397 | 359 | 347 | 401 | 331 | 389 | 337 | 1452 | |
12 | 409 | 449 | 463 | 467 | 443 | 421 | 457 | 479 | 419 | 433 | 461 | 431 | 487 | 439 | 1788 | 409 to 487 |
13 | 449 | 421 | 439 | 479 | 409 | 443 | 457 | 433 | 431 | 467 | 419 | 463 | 461 | 487 | 1788 | |
14 | 449 | 433 | 419 | 487 | 431 | 409 | 461 | 443 | 421 | 463 | 439 | 467 | 479 | 457 | 1788 |
The Minimal Solution Order-8 Prime Magic Star, Pattern A
The "Remarks" column indicates the prime number(s) missing from
the sequence of primes used.
Shown are all the basic solutions for order-8A with magic sums of 110 (the minimum
possible), 114 or 116.
Notice that there are 16 minimal solutions for pattern 8A and 19 for pattern 8B.
# | A | b | c | D | e | f | G | h | i | J | k | l | M | N | O | P | Sum | Remarks - 8A |
1 | 3 | 11 | 43 | 53 | 7 | 19 | 31 | 13 | 5 | 61 | 17 | 29 | 23 | 37 | 41 | 47 | 110 | 3-61. No number 59 |
2 | 3 | 11 | 43 | 53 | 31 | 19 | 7 | 37 | 5 | 61 | 17 | 29 | 23 | 13 | 41 | 47 | 110 | |
3 | 3 | 11 | 43 | 53 | 31 | 19 | 7 | 61 | 5 | 37 | 41 | 29 | 23 | 13 | 17 | 47 | 110 | |
4 | 3 | 29 | 17 | 61 | 5 | 13 | 31 | 19 | 7 | 53 | 43 | 11 | 47 | 41 | 37 | 23 | 110 | |
5 | 3 | 29 | 17 | 61 | 5 | 37 | 7 | 19 | 31 | 53 | 43 | 11 | 47 | 41 | 13 | 23 | 110 | |
6 | 3 | 29 | 41 | 37 | 5 | 7 | 61 | 19 | 13 | 17 | 43 | 47 | 11 | 53 | 31 | 23 | 110 | |
7 | 3 | 5 | 47 | 59 | 19 | 13 | 23 | 43 | 37 | 11 | 29 | 71 | 7 | 41 | 17 | 31 | 114 | 3-71. No 53,61,67 |
8 | 3 | 5 | 47 | 59 | 19 | 13 | 23 | 43 | 37 | 11 | 29 | 71 | 31 | 17 | 41 | 7 | 114 | |
9 | 3 | 11 | 29 | 71 | 23 | 13 | 7 | 17 | 31 | 59 | 5 | 47 | 19 | 43 | 41 | 37 | 114 | |
10 | 3 | 11 | 71 | 29 | 19 | 43 | 23 | 13 | 31 | 47 | 5 | 59 | 7 | 17 | 41 | 37 | 114 | |
11 | 3 | 11 | 71 | 29 | 23 | 43 | 19 | 17 | 31 | 47 | 5 | 59 | 7 | 13 | 41 | 37 | 114 | |
12 | 7 | 19 | 31 | 59 | 5 | 29 | 23 | 3 | 11 | 79 | 17 | 13 | 37 | 43 | 41 | 4 | 116 | Primes 3-79. No 53,61,67,71,73 |
13 | 7 | 19 | 31 | 59 | 5 | 29 | 23 | 3 | 11 | 79 | 17 | 13 | 43 | 37 | 47 | 4 | 116 | |
14 | 7 | 19 | 31 | 59 | 5 | 41 | 11 | 3 | 23 | 79 | 17 | 13 | 37 | 43 | 29 | 4 | 116 | |
15 | 7 | 47 | 3 | 59 | 23 | 5 | 29 | 13 | 43 | 31 | 37 | 41 | 11 | 79 | 19 | 1 | 116 | |
16 | 3 | 5 | 41 | 67 | 11 | 7 | 31 | 19 | 37 | 29 | 13 | 71 | 17 | 47 | 43 | 23 | 116 | 3-71. No 51-53-61 |
The Minimal Solution Order-8 Prime Magic Star, Pattern B
# | A | b | c | D | e | f | G | h | I | j | K | l | M | n | O | P | Sum | Remarks - 8B |
1 | 5 | 7 | 37 | 61 | 13 | 17 | 19 | 53 | 31 | 23 | 43 | 3 | 11 | 47 | 29 | 41 | 110 | 3-61. No number 59 |
2 | 5 | 7 | 61 | 37 | 13 | 41 | 19 | 53 | 31 | 23 | 43 | 3 | 11 | 47 | 29 | 17 | 110 | |
3 | 5 | 11 | 53 | 41 | 3 | 37 | 29 | 23 | 47 | 17 | 43 | 31 | 13 | 61 | 19 | 7 | 110 | |
4 | 5 | 31 | 61 | 13 | 37 | 41 | 19 | 53 | 7 | 23 | 43 | 3 | 11 | 47 | 29 | 17 | 110 | |
5 | 19 | 13 | 17 | 61 | 11 | 7 | 31 | 23 | 43 | 3 | 53 | 5 | 29 | 37 | 41 | 47 | 110 | |
6 | 5 | 3 | 47 | 59 | 7 | 37 | 11 | 29 | 71 | 13 | 23 | 19 | 43 | 41 | 17 | 31 | 114 | 3-71. No 53,61,67 |
7 | 5 | 3 | 47 | 59 | 7 | 37 | 11 | 29 | 71 | 17 | 19 | 23 | 43 | 41 | 13 | 31 | 114 | |
8 | 5 | 3 | 59 | 47 | 19 | 37 | 11 | 71 | 29 | 43 | 23 | 7 | 13 | 41 | 17 | 31 | 114 | |
9 | 5 | 7 | 31 | 71 | 11 | 3 | 29 | 41 | 37 | 23 | 43 | 17 | 13 | 59 | 19 | 47 | 114 | |
10 | 5 | 31 | 7 | 71 | 11 | 3 | 29 | 17 | 37 | 23 | 43 | 41 | 13 | 59 | 19 | 47 | 114 | |
11 | 23 | 7 | 13 | 71 | 3 | 11 | 29 | 19 | 59 | 5 | 47 | 17 | 31 | 37 | 41 | 43 | 114 | |
12 | 3 | 7 | 59 | 47 | 17 | 11 | 41 | 31 | 37 | 19 | 43 | 29 | 13 | 79 | 5 | 23 | 116 | Primes 3-79. No 53,61,67,71,73 |
13 | 3 | 37 | 29 | 47 | 41 | 23 | 5 | 31 | 43 | 13 | 19 | 59 | 7 | 79 | 17 | 11 | 116 | |
14 | 3 | 37 | 47 | 29 | 59 | 23 | 5 | 43 | 31 | 7 | 19 | 41 | 13 | 79 | 17 | 11 | 116 | |
15 | 3 | 37 | 59 | 17 | 47 | 11 | 41 | 31 | 7 | 19 | 43 | 29 | 13 | 79 | 5 | 23 | 116 | |
16 | 3 | 43 | 29 | 41 | 47 | 23 | 5 | 31 | 37 | 13 | 19 | 59 | 7 | 79 | 17 | 11 | 116 | |
17 | 3 | 43 | 29 | 41 | 59 | 11 | 5 | 37 | 31 | 7 | 19 | 47 | 13 | 79 | 17 | 23 | 116 | |
18 | 3 | 43 | 41 | 29 | 59 | 23 | 5 | 37 | 31 | 7 | 19 | 47 | 13 | 79 | 17 | 11 | 116 | |
19 | 5 | 23 | 17 | 71 | 29 | 3 | 13 | 43 | 37 | 31 | 19 | 47 | 7 | 67 | 11 | 41 | 116 | 3-71. No 51,53,61 |
Here are solutions for order-8, using consecutive prime sets 19 - 83 (the minimum possible), 29 - 97, 31 - 101 and 53 - 127.
# | A | b | c | D | e | f | G | h | i | J | k | l | M | N | O | P | Sum | Remarks - 8A |
1 | 19 | 43 | 59 | 83 | 31 | 67 | 23 | 29 | 79 | 73 | 41 | 71 | 53 | 61 | 47 | 37 | 204 | Primes 19 to 83 |
2 | 19 | 47 | 79 | 59 | 41 | 67 | 37 | 23 | 71 | 73 | 29 | 83 | 31 | 53 | 61 | 43 | 204 | |
3 | 19 | 53 | 73 | 59 | 29 | 37 | 79 | 23 | 31 | 71 | 47 | 67 | 41 | 61 | 83 | 43 | 204 | |
4 | 19 | 67 | 47 | 71 | 31 | 23 | 79 | 37 | 29 | 59 | 73 | 53 | 43 | 83 | 61 | 41 | 204 | |
5 | 19 | 67 | 71 | 47 | 37 | 41 | 79 | 29 | 53 | 43 | 59 | 83 | 23 | 73 | 61 | 31 | 204 | |
6 | 23 | 19 | 79 | 83 | 43 | 37 | 41 | 71 | 31 | 61 | 47 | 73 | 53 | 29 | 67 | 59 | 204 | |
7 | 23 | 19 | 79 | 83 | 43 | 47 | 31 | 61 | 41 | 71 | 37 | 73 | 53 | 29 | 67 | 59 | 204 | |
8 | 23 | 19 | 83 | 79 | 43 | 53 | 29 | 61 | 41 | 73 | 37 | 71 | 47 | 31 | 59 | 67 | 204 | |
9 | 23 | 37 | 71 | 73 | 19 | 83 | 29 | 43 | 53 | 79 | 61 | 41 | 67 | 47 | 31 | 59 | 204 | |
10 | 23 | 37 | 73 | 71 | 19 | 47 | 67 | 43 | 53 | 41 | 61 | 79 | 29 | 83 | 31 | 59 | 204 | |
11 | 23 | 73 | 47 | 61 | 19 | 53 | 71 | 29 | 37 | 67 | 83 | 31 | 59 | 79 | 43 | 41 | 204 | |
12 | 29 | 47 | 67 | 97 | 31 | 71 | 41 | 43 | 83 | 73 | 59 | 79 | 53 | 89 | 37 | 61 | 240 | Primes 29 to 97 |
13 | 31 | 41 | 89 | 97 | 71 | 47 | 43 | 83 | 59 | 73 | 53 | 101 | 37 | 61 | 67 | 79 | 258 | Primes 31 to 101 |
14 | 31 | 47 | 101 | 79 | 53 | 67 | 59 | 89 | 37 | 73 | 83 | 71 | 43 | 61 | 41 | 97 | 258 | |
15 | 31 | 53 | 101 | 73 | 59 | 83 | 43 | 47 | 71 | 97 | 41 | 89 | 37 | 61 | 67 | 79 | 258 | |
16 | 31 | 53 | 101 | 73 | 59 | 83 | 43 | 47 | 79 | 89 | 41 | 97 | 37 | 61 | 67 | 71 | 258 | |
17 | 31 | 59 | 71 | 97 | 47 | 41 | 73 | 89 | 53 | 43 | 101 | 83 | 79 | 61 | 67 | 37 | 258 | |
18 | 53 | 67 | 101 | 127 | 61 | 71 | 89 | 97 | 79 | 83 | 103 | 109 | 113 | 73 | 10 | 59 | 348 | Primes 53 to 127 |
19 | 53 | 67 | 101 | 127 | 83 | 59 | 79 | 89 | 71 | 109 | 73 | 113 | 61 | 103 | 97 | 107 | 348 | |
20 | 53 | 73 | 113 | 109 | 71 | 89 | 79 | 59 | 83 | 127 | 61 | 107 | 67 | 97 | 103 | 101 | 348 | |
21 | 53 | 79 | 103 | 113 | 61 | 67 | 107 | 71 | 73 | 97 | 89 | 109 | 101 | 83 | 12 | 59 | 348 | |
22 | 53 | 109 | 89 | 97 | 73 | 71 | 107 | 67 | 61 | 113 | 103 | 79 | 59 | 127 | 83 | 101 | 348 | |
23 | 67 | 101 | 71 | 109 | 53 | 83 | 103 | 59 | 73 | 113 | 107 | 61 | 97 | 127 | 79 | 89 | 348 |
# | A | b | c | D | e | f | G | h | I | j | K | l | M | n | O | P | Sum | Remarks -8B |
1 | 19 | 29 | 73 | 83 | 31 | 47 | 43 | 79 | 53 | 59 | 61 | 23 | 41 | 67 | 37 | 71 | 204 | Primes 19 to 83 |
2 | 19 | 29 | 83 | 73 | 23 | 71 | 37 | 59 | 79 | 41 | 61 | 31 | 53 | 67 | 43 | 47 | 204 | |
3 | 19 | 59 | 43 | 83 | 37 | 53 | 31 | 73 | 41 | 47 | 79 | 23 | 29 | 61 | 67 | 71 | 204 | |
4 | 19 | 59 | 53 | 73 | 61 | 23 | 47 | 67 | 31 | 41 | 71 | 29 | 37 | 83 | 43 | 79 | 204 | |
5 | 19 | 59 | 53 | 73 | 71 | 23 | 37 | 67 | 41 | 31 | 61 | 29 | 47 | 83 | 43 | 79 | 204 | |
6 | 19 | 59 | 79 | 47 | 23 | 61 | 73 | 41 | 31 | 67 | 83 | 43 | 37 | 71 | 29 | 53 | 204 | |
7 | 19 | 67 | 47 | 71 | 73 | 23 | 37 | 59 | 41 | 29 | 61 | 31 | 53 | 79 | 43 | 83 | 204 | |
8 | 19 | 67 | 71 | 47 | 31 | 83 | 43 | 41 | 53 | 59 | 61 | 73 | 29 | 79 | 37 | 23 | 204 | |
9 | 23 | 53 | 61 | 67 | 59 | 37 | 41 | 31 | 79 | 19 | 47 | 43 | 83 | 73 | 29 | 71 | 204 | |
10 | 23 | 61 | 83 | 37 | 59 | 79 | 29 | 41 | 73 | 19 | 53 | 43 | 67 | 71 | 47 | 31 | 204 | |
11 | 29 | 43 | 79 | 53 | 31 | 61 | 59 | 19 | 83 | 23 | 67 | 47 | 71 | 73 | 37 | 41 | 204 | |
12 | 29 | 61 | 47 | 67 | 83 | 23 | 31 | 53 | 59 | 19 | 43 | 37 | 71 | 73 | 41 | 79 | 204 | |
13 | 29 | 67 | 83 | 61 | 31 | 59 | 89 | 43 | 41 | 71 | 97 | 47 | 53 | 79 | 37 | 73 | 240 | Primes 29 to 97 |
14 | 31 | 41 | 97 | 71 | 37 | 89 | 43 | 73 | 83 | 61 | 59 | 29 | 79 | 53 | 47 | 67 | 240 | |
15 | 31 | 41 | 97 | 89 | 59 | 73 | 37 | 101 | 79 | 67 | 53 | 43 | 61 | 83 | 47 | 71 | 258 | Primes 31 to 101 |
16 | 31 | 83 | 101 | 43 | 71 | 97 | 47 | 67 | 61 | 73 | 53 | 79 | 59 | 89 | 37 | 41 | 258 | |
17 | 37 | 59 | 73 | 89 | 61 | 41 | 67 | 79 | 53 | 43 | 101 | 31 | 47 | 97 | 71 | 83 | 258 | |
18 | 41 | 31 | 89 | 97 | 37 | 71 | 53 | 73 | 101 | 61 | 59 | 43 | 83 | 67 | 47 | 79 | 258 | |
19 | 41 | 31 | 97 | 89 | 37 | 79 | 53 | 73 | 101 | 61 | 59 | 43 | 83 | 67 | 47 | 71 | 258 | |
20 | 41 | 67 | 61 | 89 | 43 | 73 | 53 | 37 | 101 | 31 | 83 | 79 | 59 | 97 | 71 | 47 | 258 | |
21 | 41 | 79 | 37 | 101 | 73 | 31 | 53 | 67 | 59 | 43 | 83 | 61 | 47 | 97 | 71 | 89 | 258 | |
22 | 53 | 97 | 71 | 127 | 59 | 73 | 89 | 83 | 79 | 107 | 103 | 101 | 61 | 113 | 67 | 109 | 348 | Primes 53 to 127 |
23 | 53 | 97 | 127 | 71 | 67 | 109 | 101 | 89 | 61 | 113 | 107 | 79 | 73 | 103 | 59 | 83 | 348 | |
24 | 53 | 97 | 127 | 71 | 107 | 109 | 61 | 89 | 101 | 73 | 67 | 79 | 113 | 103 | 59 | 83 | 348 | |
25 | 59 | 97 | 103 | 89 | 109 | 79 | 71 | 67 | 113 | 53 | 73 | 101 | 107 | 127 | 61 | 83 | 348 | |
26 | 59 | 97 | 103 | 89 | 109 | 79 | 71 | 107 | 73 | 53 | 113 | 61 | 67 | 127 | 101 | 83 | 348 | |
27 | 61 | 83 | 97 | 107 | 79 | 59 | 103 | 73 | 89 | 67 | 113 | 53 | 109 | 101 | 71 | 127 | 348 | |
28 | 61 | 89 | 127 | 71 | 107 | 73 | 97 | 83 | 79 | 59 | 103 | 53 | 109 | 113 | 67 | 101 | 348 | |
29 | 61 | 101 | 83 | 103 | 53 | 113 | 79 | 59 | 109 | 97 | 89 | 127 | 73 | 107 | 71 | 67 | 348 |
Please send me Feedback about my Web site!
Harvey Heinz harveyheinz@shaw.ca
Last updated March 01, 2005
Copyright © 2001 by Harvey D. Heinz