Two or more polyforms are compatible if there is a polyform that each can tile. Most pairs of hexominoes are compatible, but many are not; see Giovanni Resta's page Hexominoes. All but one pair of flat hexacubes are known to be compatible:
If you solve this case, or find a smaller solution for another case, please write.
Thanks to Mark Smith for suggesting this problem.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | • | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 6 | 3 | 4 | 4 | 6 | 3 | 4 | 6 | 6 | 6 | 4 | 6 | 2 | 6 | 3 | 6 | 6 |
2 | 2 | • | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
3 | 2 | 2 | • | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 6 | 2 | 2 | 4 | 6 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 6 | 2 | 2 |
4 | 2 | 2 | 2 | • | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 2 | 2 | 3 | 4 | 2 | 10 | 8 |
5 | 4 | 2 | 2 | 2 | • | 4 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 3 | 2 | 6 | 4 | 4 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 8 |
6 | 2 | 2 | 2 | 4 | 4 | • | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 4 | 4 | 8 | 4 | 2 | 8 | 6 | 2 | 6 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 3 | 8 | 6 | 2 | 2 |
7 | 2 | 2 | 4 | 2 | 2 | 2 | • | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 3 | 2 | 2 | 2 | 2 | 3 | 3 | 4 |
8 | 2 | 4 | 4 | 4 | 3 | 2 | 2 | • | 2 | 4 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 4 | 2 | 3 | 2 | 4 | 2 | 4 | 2 | 4 | 4 | 4 | 2 | 4 | 2 | 6 | 6 | ? | 16 |
9 | 4 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | • | 2 | 2 | 4 | 4 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 6 | 2 | 4 | 4 | 2 | 2 | 3 | 4 | 4 | 14 | 8 |
10 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | • | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 3 | 2 | 3 | 6 | 6 | 4 | 2 |
11 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | • | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 6 | 4 | 2 | 4 | 4 | 4 | 2 | 2 | 6 | 2 | 8 | 4 | 2 | 2 | 2 | 2 |
12 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | • | 4 | 8 | 4 | 4 | 2 | 2 | 4 | 3 | 2 | 2 | 2 | 2 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 3 | 4 | 10 |
13 | 4 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 2 | 4 | • | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 |
14 | 2 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 4 | 8 | 2 | • | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 8 | 2 | 8 | 3 | 4 | 4 | 4 | 2 | 3 | 2 | 2 | 4 | 4 |
15 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | • | 2 | 2 | 2 | 2 | 6 | 2 | 2 | 4 | 4 | 4 | 8 | 4 | 6 | 4 | 4 | 2 | 3 | 6 | 12 | 4 |
16 | 4 | 2 | 2 | 2 | 2 | 8 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | • | 4 | 8 | 2 | 2 | 2 | 4 | 8 | 4 | 2 | 6 | 2 | 8 | 2 | 8 | 2 | 4 | 4 | 8 | 8 |
17 | 4 | 2 | 4 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | • | 2 | 2 | 4 | 2 | 2 | 3 | 3 | 4 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 3 | 4 | 2 |
18 | 4 | 2 | 4 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 2 | 4 | 2 | 8 | 2 | • | 2 | 3 | 2 | 2 | 2 | 3 | 8 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 4 |
19 | 6 | 4 | 2 | 2 | 4 | 8 | 2 | 2 | 2 | 6 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | • | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 4 | 2 | 4 | 2 | 2 | 2 | 4 |
20 | 3 | 3 | 6 | 2 | 3 | 6 | 3 | 3 | 2 | 6 | 6 | 3 | 2 | 2 | 6 | 2 | 4 | 3 | 2 | • | 2 | 6 | 6 | 4 | 6 | 4 | 4 | 3 | 6 | 4 | 3 | 2 | 2 | 6 | 10 |
21 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | • | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 |
22 | 4 | 2 | 2 | 2 | 6 | 6 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 6 | 2 | • | 2 | 2 | 2 | 4 | 2 | 8 | 2 | 6 | 4 | 4 | 2 | 8 | 4 |
23 | 6 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 8 | 4 | 8 | 3 | 2 | 2 | 6 | 2 | 2 | • | 2 | 4 | 2 | 4 | 2 | 3 | 2 | 4 | 4 | 4 | 2 | 2 |
24 | 3 | 2 | 6 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 2 | 4 | 2 | 2 | 2 | • | 4 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 4 | 4 | 6 |
25 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 6 | 2 | 4 | 6 | 2 | 8 | 4 | 2 | 4 | 8 | 4 | 6 | 2 | 2 | 4 | 4 | • | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 6 | 12 | 4 |
26 | 6 | 2 | 2 | 3 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 3 | 8 | 6 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 2 | 2 | • | 2 | 2 | 4 | 3 | 4 | 2 | 2 | 2 | 2 |
27 | 6 | 2 | 2 | 4 | 4 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 2 | 2 | • | 2 | 4 | 4 | 4 | 4 | 6 | 2 | 2 |
28 | 6 | 2 | 2 | 4 | 2 | 4 | 3 | 4 | 4 | 2 | 6 | 2 | 2 | 4 | 6 | 8 | 4 | 2 | 4 | 3 | 2 | 8 | 2 | 4 | 2 | 2 | 2 | • | 2 | 4 | 3 | 2 | 6 | 6 | 16 |
29 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 6 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 2 | • | 2 | 2 | 6 | 4 | 8 | 6 |
30 | 6 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 8 | 2 | 2 | 2 | 4 | 8 | 4 | 4 | 2 | 4 | 2 | 6 | 2 | 2 | 4 | 3 | 4 | 4 | 2 | • | 3 | 4 | 6 | 4 | 8 |
31 | 2 | 2 | 4 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 4 | 2 | 2 | 3 | 2 | 2 | 4 | 2 | 4 | 3 | 2 | 4 | 4 | 4 | 2 | 4 | 4 | 3 | 2 | 3 | • | 4 | 3 | 6 | 6 |
32 | 6 | 4 | 2 | 4 | 6 | 8 | 2 | 6 | 4 | 6 | 2 | 4 | 3 | 2 | 3 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 4 | 2 | 6 | 4 | 4 | • | 2 | 4 | 2 |
33 | 3 | 4 | 6 | 2 | 6 | 6 | 3 | 6 | 4 | 6 | 2 | 3 | 2 | 2 | 6 | 4 | 3 | 4 | 2 | 2 | 4 | 2 | 4 | 4 | 6 | 2 | 6 | 6 | 4 | 6 | 3 | 2 | • | 4 | 4 |
34 | 6 | 4 | 2 | 10 | 6 | 2 | 3 | ? | 14 | 4 | 2 | 4 | 2 | 4 | 12 | 8 | 4 | 2 | 2 | 6 | 2 | 8 | 2 | 4 | 12 | 2 | 2 | 6 | 8 | 4 | 6 | 4 | 4 | • | 2 |
35 | 6 | 8 | 2 | 8 | 8 | 2 | 4 | 16 | 8 | 2 | 2 | 10 | 2 | 4 | 4 | 8 | 2 | 4 | 4 | 10 | 4 | 4 | 2 | 6 | 4 | 2 | 2 | 16 | 6 | 8 | 6 | 2 | 4 | 2 | • |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
Last revised 2024-07-08.