Two or more polyforms are compatible if there is a polyform that each can tile. Most pairs of hexominoes are compatible, but many are not; see Giovanni Resta's page Hexominoes. All but one pair of flat hexacubes are known to be compatible:
If you solve this case, or find a smaller solution for another case, please write.
Thanks to Mark Smith for suggesting this problem.
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | • | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 6 | 3 | 4 | 4 | 6 | 3 | 4 | 6 | 6 | 6 | 4 | 6 | 2 | 6 | 3 | 6 | 6 |
| 2 | 2 | • | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
| 3 | 2 | 2 | • | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 6 | 2 | 2 | 4 | 6 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 6 | 2 | 2 |
| 4 | 2 | 2 | 2 | • | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 2 | 2 | 3 | 4 | 2 | 10 | 8 |
| 5 | 4 | 2 | 2 | 2 | • | 4 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 3 | 2 | 6 | 4 | 4 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 8 |
| 6 | 2 | 2 | 2 | 4 | 4 | • | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 4 | 4 | 8 | 4 | 2 | 8 | 6 | 2 | 6 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 3 | 8 | 6 | 2 | 2 |
| 7 | 2 | 2 | 4 | 2 | 2 | 2 | • | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 3 | 2 | 2 | 2 | 2 | 3 | 3 | 4 |
| 8 | 2 | 4 | 4 | 4 | 3 | 2 | 2 | • | 2 | 4 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 4 | 2 | 3 | 2 | 4 | 2 | 4 | 2 | 4 | 4 | 4 | 2 | 4 | 2 | 6 | 6 | ? | 16 |
| 9 | 4 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | • | 2 | 2 | 4 | 4 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 6 | 2 | 4 | 4 | 2 | 2 | 3 | 4 | 4 | 14 | 8 |
| 10 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | • | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 3 | 2 | 3 | 6 | 6 | 4 | 2 |
| 11 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | • | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 6 | 4 | 2 | 4 | 4 | 4 | 2 | 2 | 6 | 2 | 8 | 4 | 2 | 2 | 2 | 2 |
| 12 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | • | 4 | 8 | 4 | 4 | 2 | 2 | 4 | 3 | 2 | 2 | 2 | 2 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 3 | 4 | 10 |
| 13 | 4 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 2 | 4 | • | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 |
| 14 | 2 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 4 | 8 | 2 | • | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 8 | 2 | 8 | 3 | 4 | 4 | 4 | 2 | 3 | 2 | 2 | 4 | 4 |
| 15 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | • | 2 | 2 | 2 | 2 | 6 | 2 | 2 | 4 | 4 | 4 | 8 | 4 | 6 | 4 | 4 | 2 | 3 | 6 | 12 | 4 |
| 16 | 4 | 2 | 2 | 2 | 2 | 8 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | • | 4 | 8 | 2 | 2 | 2 | 4 | 8 | 4 | 2 | 6 | 2 | 8 | 2 | 8 | 2 | 4 | 4 | 8 | 8 |
| 17 | 4 | 2 | 4 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | • | 2 | 2 | 4 | 2 | 2 | 3 | 3 | 4 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 3 | 4 | 2 |
| 18 | 4 | 2 | 4 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 2 | 4 | 2 | 8 | 2 | • | 2 | 3 | 2 | 2 | 2 | 3 | 8 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 4 |
| 19 | 6 | 4 | 2 | 2 | 4 | 8 | 2 | 2 | 2 | 6 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | • | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 4 | 2 | 4 | 2 | 2 | 2 | 4 |
| 20 | 3 | 3 | 6 | 2 | 3 | 6 | 3 | 3 | 2 | 6 | 6 | 3 | 2 | 2 | 6 | 2 | 4 | 3 | 2 | • | 2 | 6 | 6 | 4 | 6 | 4 | 4 | 3 | 6 | 4 | 3 | 2 | 2 | 6 | 10 |
| 21 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | • | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 |
| 22 | 4 | 2 | 2 | 2 | 6 | 6 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 6 | 2 | • | 2 | 2 | 2 | 4 | 2 | 8 | 2 | 6 | 4 | 4 | 2 | 8 | 4 |
| 23 | 6 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 8 | 4 | 8 | 3 | 2 | 2 | 6 | 2 | 2 | • | 2 | 4 | 2 | 4 | 2 | 3 | 2 | 4 | 4 | 4 | 2 | 2 |
| 24 | 3 | 2 | 6 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 3 | 3 | 2 | 4 | 2 | 2 | 2 | • | 4 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 4 | 4 | 6 |
| 25 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 6 | 2 | 4 | 6 | 2 | 8 | 4 | 2 | 4 | 8 | 4 | 6 | 2 | 2 | 4 | 4 | • | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 6 | 12 | 4 |
| 26 | 6 | 2 | 2 | 3 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 3 | 8 | 6 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 2 | 2 | • | 2 | 2 | 4 | 3 | 4 | 2 | 2 | 2 | 2 |
| 27 | 6 | 2 | 2 | 4 | 4 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 2 | 2 | • | 2 | 4 | 4 | 4 | 4 | 6 | 2 | 2 |
| 28 | 6 | 2 | 2 | 4 | 2 | 4 | 3 | 4 | 4 | 2 | 6 | 2 | 2 | 4 | 6 | 8 | 4 | 2 | 4 | 3 | 2 | 8 | 2 | 4 | 2 | 2 | 2 | • | 2 | 4 | 3 | 2 | 6 | 6 | 16 |
| 29 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 6 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 2 | • | 2 | 2 | 6 | 4 | 8 | 6 |
| 30 | 6 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 8 | 2 | 2 | 2 | 4 | 8 | 4 | 4 | 2 | 4 | 2 | 6 | 2 | 2 | 4 | 3 | 4 | 4 | 2 | • | 3 | 4 | 6 | 4 | 8 |
| 31 | 2 | 2 | 4 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 4 | 2 | 2 | 3 | 2 | 2 | 4 | 2 | 4 | 3 | 2 | 4 | 4 | 4 | 2 | 4 | 4 | 3 | 2 | 3 | • | 4 | 3 | 6 | 6 |
| 32 | 6 | 4 | 2 | 4 | 6 | 8 | 2 | 6 | 4 | 6 | 2 | 4 | 3 | 2 | 3 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 2 | 4 | 2 | 6 | 4 | 4 | • | 2 | 4 | 2 |
| 33 | 3 | 4 | 6 | 2 | 6 | 6 | 3 | 6 | 4 | 6 | 2 | 3 | 2 | 2 | 6 | 4 | 3 | 4 | 2 | 2 | 4 | 2 | 4 | 4 | 6 | 2 | 6 | 6 | 4 | 6 | 3 | 2 | • | 4 | 4 |
| 34 | 6 | 4 | 2 | 10 | 6 | 2 | 3 | ? | 14 | 4 | 2 | 4 | 2 | 4 | 12 | 8 | 4 | 2 | 2 | 6 | 2 | 8 | 2 | 4 | 12 | 2 | 2 | 6 | 8 | 4 | 6 | 4 | 4 | • | 2 |
| 35 | 6 | 8 | 2 | 8 | 8 | 2 | 4 | 16 | 8 | 2 | 2 | 10 | 2 | 4 | 4 | 8 | 2 | 4 | 4 | 10 | 4 | 4 | 2 | 6 | 4 | 2 | 2 | 16 | 6 | 8 | 6 | 2 | 4 | 2 | • |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
Last revised 2024-07-08.