Polycube symmetries (conjugacy classes of subgroups of the achiral
octahedral group) were first identified by W. F. Lunnon in
Symmetry of Cubical and General Polyominoes,
in Graph Theory and Computing,
Ronald C. Read, editor, New York, Academic Press, 1972.
Lunnon's codes are given below.
An asterisk means that Lunnon's example differs from mine.
1 | 2 | 3 | 4 | 6 | 8 | 12 | 16 | 24 | 48 | ||||||||||||||||||||||||
I5 E | C4 V | B6 I | CF6 E~ | F5 E/ | E4 E| | D7 Y | A12 L | J10 I$ | BC10 K | BB10 * | CK6 V/~ | BE4 I|~ | CE3 V|/ | BF6 I/ | EE4 I| | CD10 X | FF4 Y/ | H12 Y~ | AB16 # | EF6 L|/ | BFF8 */$ | CJ6 K|$ | AE8 L|~$ | EFF7 K|/~ | EEE6 *|~ | BD34 T | DF6 X/~ | BBC2 #|/~$ | R56 O | CCC20 T/$ | DEE25 T|~ | G1 O|/~$ | |
I5 | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | > | |
C4 | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | > | ∥ | > | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | > | ∥ | > | ∥ | ∥ | ∥ | > | > | ∥ | ∥ | > | |
B6 | < | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | > | > | ∥ | > | ∥ | > | > | ∥ | ∥ | ∥ | > | > | > | > | > | > | > | > | ∥ | > | > | > | > | > | |
CF6 | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | ∥ | > | > | > | ∥ | > | > | ∥ | ∥ | > | > | |
F5 | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | > | > | ∥ | ∥ | > | ∥ | ∥ | > | > | ∥ | ∥ | > | ∥ | ∥ | > | > | ∥ | > | ∥ | > | |
E4 | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | ∥ | > | ∥ | ∥ | ∥ | ∥ | > | ∥ | > | > | > | > | ∥ | ∥ | > | ∥ | ∥ | > | > | |
D7 | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | > | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | ∥ | > | > | > | > | |
A12 | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | ∥ | ∥ | > | ∥ | ∥ | ∥ | ∥ | > | > | ∥ | ∥ | > | |
J10 | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | > | ∥ | ∥ | ∥ | ∥ | > | ∥ | > | ∥ | > | |
BC10 | < | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | > | ∥ | > | ∥ | ∥ | ∥ | > | > | ∥ | ∥ | > | |
BB10 | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | > | ∥ | ∥ | ∥ | > | ∥ | ∥ | > | > | ∥ | ∥ | > | |
CK6 | < | < | ∥ | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | |
BE4 | < | ∥ | < | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | > | ∥ | ∥ | > | ∥ | ∥ | > | > | |
CE3 | < | < | ∥ | ∥ | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | |
BF6 | < | ∥ | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | ∥ | > | ∥ | > | |
EE4 | < | ∥ | < | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | > | > | > | > | ∥ | ∥ | > | ∥ | ∥ | > | > | |
CD10 | < | ∥ | ∥ | ∥ | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | ∥ | > | > | > | > | |
FF4 | < | ∥ | ∥ | ∥ | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | > | ∥ | > | |
H12 | < | ∥ | ∥ | < | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | > | |
AB16 | < | < | < | ∥ | ∥ | ∥ | ∥ | < | ∥ | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | ∥ | ∥ | > | |
EF6 | < | ∥ | < | ∥ | < | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | |
BFF8 | < | ∥ | < | ∥ | < | ∥ | ∥ | ∥ | < | ∥ | < | ∥ | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | |
CJ6 | < | < | < | ∥ | ∥ | < | ∥ | ∥ | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | |
AE8 | < | ∥ | < | < | ∥ | < | ∥ | < | < | ∥ | ∥ | ∥ | < | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | |
EFF7 | < | < | < | < | < | < | ∥ | ∥ | ∥ | < | ∥ | < | < | < | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | |
EEE6 | < | ∥ | < | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | < | ∥ | < | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | ∥ | ∥ | ∥ | > | |
BD34 | < | ∥ | < | ∥ | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | > | > | > | |
DF6 | < | ∥ | ∥ | < | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | < | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | > | |
BBC2 | < | < | < | < | < | < | ∥ | < | < | < | < | < | < | < | < | < | ∥ | ∥ | ∥ | < | < | < | < | < | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | > | |
R56 | < | < | < | ∥ | ∥ | ∥ | < | < | ∥ | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | < | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | > | |
CCC20 | < | ∥ | < | ∥ | < | ∥ | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | < | ∥ | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | > | |
DEE25 | < | ∥ | < | < | ∥ | < | < | ∥ | ∥ | ∥ | ∥ | ∥ | < | ∥ | ∥ | < | < | ∥ | < | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | ∥ | < | ∥ | ∥ | ∥ | ∥ | > | |
G1 | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | < | |
I5 E | C4 V | B6 I | CF6 E~ | F5 E/ | E4 E| | D7 Y | A12 L | J10 I$ | BC10 K | BB10 * | CK6 V/~ | BE4 I|~ | CE3 V|/ | BF6 I/ | EE4 I| | CD10 X | FF4 Y/ | H12 Y~ | AB16 # | EF6 L|/ | BFF8 */$ | CJ6 K|$ | AE8 L|~$ | EFF7 K|/~ | EEE6 *|~ | BD34 T | DF6 X/~ | BBC2 #|/~$ | R56 O | CCC20 T/$ | DEE25 T|~ | G1 O|/~$ |
Last revised 2024-05-12.