Two or more polyforms are compatible if there is a polyform that each can tile. Here are the minimal known compatibilities for trigems. Most were found by Abaroth. Please write if you find a smaller solution or solve an unsolved case.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | * | 2 | 3 | 2 | 2 | 2 | 6 | 4 | 3 | 3 | 6 | 3 | 4 | ? | 3 |
2 | 2 | * | ? | R | 6 | 6 | 3 | 6 | 6 | 2 | 6 | ? | 3 | 3 | 6 |
3 | 3 | ? | * | 3 | R | ? | R | R | 3 | 3 | R | R | ? | ? | ? |
4 | 2 | R | 3 | * | 6 | 2 | R | 3 | 3 | 6 | ? | ? | 3 | R | ? |
5 | 2 | 6 | R | 6 | * | 3 | R | 2 | 3 | 3 | 6 | R | 2 | ? | R |
6 | 2 | 6 | ? | 2 | 3 | * | R | ? | ? | 6 | ? | ? | 3 | ? | 6 |
7 | 6 | 3 | R | R | R | R | * | 2 | 6 | 6 | 6 | R | 2 | 3 | R |
8 | 4 | 6 | R | 3 | 2 | ? | 2 | * | 3 | 6 | 6 | 2 | 2 | 2 | ? |
9 | 3 | 6 | 3 | 3 | 3 | ? | 6 | 3 | * | 3 | 2 | 6 | 6 | ? | ? |
10 | 3 | 2 | 3 | 6 | 3 | 6 | 6 | 6 | 3 | * | 2 | 3 | 3 | ? | 3 |
11 | 6 | 6 | R | ? | 6 | ? | 6 | 6 | 2 | 2 | * | 3 | 3 | 3 | ? |
12 | 3 | ? | R | ? | R | ? | R | 2 | 6 | 3 | 3 | * | ? | ? | ? |
13 | 4 | 3 | ? | 3 | 2 | 3 | 2 | 2 | 6 | 3 | 3 | ? | * | 2 | 2 |
14 | ? | 3 | ? | R | ? | ? | 3 | 2 | ? | ? | 3 | ? | 2 | * | ? |
15 | 3 | 6 | ? | ? | R | 6 | R | ? | ? | 3 | ? | ? | 2 | ? | * |
Last revised 2020-04-12.