It has long been known that eight hexiamonds can tile regular hexagons:
Here I study the related problem of tiling some regular hexagon with two hexiamonds, using the same number of copies of each. If you find a smaller solution or solve an unsolved case, please write.
For more general tilings with two hexiamonds, see the Poly Pages. For balanced tilings with three hexiamonds, see Three-Hexiamond Balanced Hexagons.
I | L | E | V | U | F | A | H | S | O | P | X | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | * | 16 | ? | 36 | 16 | 16 | 36 | 16 | 144 | ? | 16 | ? |
L | 16 | * | ? | 16 | 4 | 4 | 16 | 16 | 324 | ? | 16 | ? |
E | ? | ? | * | 36 | 16 | 36 | × | × | × | 4 | 144 | × |
V | 36 | 16 | 36 | * | 36 | 16 | 36 | 16 | 36 | 144 | 4 | 4 |
U | 16 | 4 | 16 | 36 | * | 36 | 36 | 4 | 36 | ? | 16 | ? |
F | 16 | 4 | 36 | 16 | 36 | * | 4 | 36 | 144 | ? | 16 | ? |
A | 36 | 16 | × | 36 | 36 | 4 | * | 144 | 324 | ? | 36 | ? |
H | 16 | 16 | × | 16 | 4 | 36 | 144 | * | × | ? | 36 | × |
S | 144 | 324 | × | 36 | 36 | 144 | 324 | × | * | × | 16 | × |
O | ? | ? | 4 | 144 | ? | ? | ? | ? | × | * | 16 | × |
P | 16 | 16 | 144 | 4 | 16 | 16 | 36 | 36 | 16 | 16 | * | 144 |
X | ? | ? | × | 4 | ? | ? | ? | × | × | × | 144 | * |
Last revised 2012-06-29.