Here I show minimal known convex polygons formed by pairs of polyiamonds with 4 through 7 cells. If you find a smaller solution or solve an unsolved case, please write.
At Math Magic for April 1999, Erich Friedman considers for various plane shapes the set of values of n for which n copies of the shape can form a convex shape. Ed Pegg Jr. also considers this problem at Dissections of Convex Figures.
See also Minimal Convex Polyiamond Tilings.
![]() | ![]() | ![]() | |
---|---|---|---|
![]() | • | 4 | 2 |
![]() | 4 | • | 5 |
![]() | 2 | 5 | • |
![]() | ![]() | ![]() | |
---|---|---|---|
![]() | 2 | 3 | 2 |
![]() | 3 | 3 | 3 |
![]() | 3 | 4 | 14 |
![]() | 4 | 3 | 3 |
![]() | ![]() | ![]() | ![]() | |
---|---|---|---|---|
![]() | • | 3 | 3 | 3 |
![]() | 3 | • | 3 | 4 |
![]() | 3 | 3 | • | 3 |
![]() | 3 | 4 | 3 | • |
![]() | ![]() | ![]() | |
---|---|---|---|
![]() | 2 | 5 | 3 |
![]() | 2 | 5 | 4 |
![]() | ? | 7 | ? |
![]() | 3 | 5 | 3 |
![]() | 5 | 2 | 4 |
![]() | 3 | 3 | 3 |
![]() | 3 | 5 | 3 |
![]() | 5 | 5 | ? |
![]() | 6 | 5 | ? |
![]() | 3 | 2 | ? |
![]() | 3 | 3 | 3 |
![]() | 5 | 12 | ? |
![]() | ![]() | ![]() | ![]() | |
---|---|---|---|---|
![]() | 2 | 4 | 4 | 4 |
![]() | 2 | 3 | 4 | 3 |
![]() | 6 | 4 | 38 | 4 |
![]() | 3 | 2 | 3 | 8 |
![]() | 4 | 2 | 2 | 4 |
![]() | 3 | 4 | 3 | 2 |
![]() | 3 | 6 | 7 | 2 |
![]() | 4 | 3 | 10 | 6 |
![]() | 6 | 3 | 22 | ? |
![]() | 4 | 3 | 2 | ? |
![]() | 3 | 2 | 4 | 6 |
![]() | 4 | 5 | 38 | 5 |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | • | 5 | ? | 3 | 8 | 3 | 3 | 12 | 8 | 3 | 3 | ? |
![]() | 5 | • | 7 | 7 | 4 | 4 | 4 | 7 | 7 | 4 | 6 | 8 |
![]() | ? | 7 | • | 8 | 3 | 4 | ? | ? | ? | 4 | 12 | ? |
![]() | 3 | 7 | 8 | • | 8 | 4 | 4 | 8 | 12 | 4 | 2 | 4 |
![]() | 8 | 4 | 3 | 8 | • | 5 | 8 | 4 | 3 | 13 | 3 | 8 |
![]() | 3 | 4 | 4 | 4 | 5 | • | 2 | 6 | 7 | 21 | 4 | 17 |
![]() | 3 | 4 | ? | 4 | 8 | 2 | • | 22 | 30 | 25 | 4 | ? |
![]() | 12 | 7 | ? | 8 | 4 | 6 | 22 | • | ? | 8 | 4 | ? |
![]() | 8 | 7 | ? | 12 | 3 | 7 | 30 | ? | • | ? | 3 | ? |
![]() | 3 | 4 | 4 | 4 | 13 | 21 | 25 | 8 | ? | • | 3 | 3 |
![]() | 3 | 6 | 12 | 2 | 3 | 4 | 4 | 4 | 3 | 3 | • | 7 |
![]() | ? | 8 | ? | 4 | 8 | 17 | ? | ? | ? | 3 | 7 | • |
![]() | ![]() | ![]() | |
---|---|---|---|
![]() | 2 | 3 | 4 |
![]() | 2 | 3 | 6 |
![]() | 8 | 4 | ? |
![]() | 2 | 5 | 4 |
![]() | 2 | 4 | 6 |
![]() | 2 | 3 | 4 |
![]() | 4 | 4 | 5 |
![]() | 14 | 4 | ? |
![]() | 4 | 4 | 36 |
![]() | 4 | 2 | 18 |
![]() | 5 | 11 | ? |
![]() | 2 | 2 | 2 |
![]() | 6 | 4 | ? |
![]() | 4 | 4 | ? |
![]() | 5 | 6 | ? |
![]() | 4 | 2 | 4 |
![]() | 5 | 6 | ? |
![]() | 4 | 6 | 30 |
![]() | 6 | 4 | ? |
![]() | 4 | 7 | ? |
![]() | 8 | 8 | ? |
![]() | 10 | ? | ? |
![]() | 4 | 6 | 162 |
![]() | 3 | 3 | 7 |
![]() | ![]() | ![]() | ![]() | |
---|---|---|---|---|
![]() | 2 | 4 | 3 | 3 |
![]() | 3 | 4 | 3 | 6 |
![]() | 7 | 4 | 20 | 8 |
![]() | 2 | 3 | 5 | 3 |
![]() | 2 | 4 | 4 | 4 |
![]() | 3 | 4 | 3 | ? |
![]() | 4 | 3 | 4 | 3 |
![]() | 10 | 4 | 8 | 3 |
![]() | 7 | 5 | 4 | 4 |
![]() | 4 | 2 | 2 | ? |
![]() | 6 | 4 | 12 | ? |
![]() | 3 | 3 | 2 | ? |
![]() | 14 | 4 | 6 | ? |
![]() | 9 | 4 | 6 | 12 |
![]() | 5 | 4 | 20 | 4 |
![]() | 4 | 2 | 2 | 4 |
![]() | 7 | 6 | 6 | ? |
![]() | 5 | 4 | 18 | 51 |
![]() | 9 | 5 | 4 | ? |
![]() | 4 | 4 | 30 | 6 |
![]() | 9 | 5 | 42 | 66 |
![]() | 11 | 4 | 7 | ? |
![]() | 4 | 3 | 6 | 6 |
![]() | 4 | 6 | 4 | 4 |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 2 | 4 | 6 | 5 | 4 | 3 | 3 | 8 | 17 | 4 | 5 | 5 |
![]() | 4 | 3 | 6 | 8 | 3 | 4 | 6 | 8 | 5 | 10 | 6 | 5 |
![]() | 9 | 7 | ? | 8 | 3 | 4 | 8 | 15 | 27 | 10 | 8 | ? |
![]() | 5 | 6 | ? | 10 | 12 | 8 | 8 | 12 | ? | ? | 8 | ? |
![]() | 3 | 5 | 6 | 6 | 8 | 5 | 6 | 5 | 8 | ? | 5 | ? |
![]() | 4 | 3 | 6 | 6 | 18 | 2 | 6 | 8 | ? | ? | 6 | 5 |
![]() | 4 | 5 | 7 | 10 | 2 | 3 | 6 | 12 | ? | ? | 6 | 690 |
![]() | 93 | 6 | ? | 15 | 24 | 6 | ? | 15 | ? | 2 | 6 | ? |
![]() | 8 | 5 | 8 | 10 | 4 | 5 | 7 | 8 | 11 | ? | 6 | ? |
![]() | 8 | 6 | 3 | 29 | ? | 10 | 18 | 6 | 3 | ? | 6 | 6 |
![]() | 14 | 17 | ? | 6 | 4 | 13 | 22 | ? | ? | ? | 6 | ? |
![]() | 3 | 2 | 3 | 3 | 18 | 3 | 3 | 4 | ? | ? | 3 | 3 |
![]() | 24 | 7 | 2 | 168 | ? | 12 | ? | 12 | ? | ? | 10 | ? |
![]() | 16 | 6 | 12 | 18 | 18 | 6 | 22 | ? | ? | ? | 8 | ? |
![]() | 162 | 7 | ? | 6 | 3 | 9 | 12 | ? | ? | 4 | 10 | ? |
![]() | 6 | 6 | 3 | 10 | 16 | 5 | 6 | 6 | 3 | ? | 6 | 324 |
![]() | 14 | 12 | 15 | 15 | 4 | 8 | 20 | ? | ? | ? | 9 | ? |
![]() | 11 | 7 | ? | 12 | 15 | 10 | 23 | ? | ? | ? | 8 | ? |
![]() | ? | 6 | 8 | 10 | 24 | 14 | 28 | 72 | ? | ? | 9 | ? |
![]() | 6 | 7 | ? | 10 | 6 | 10 | 10 | ? | ? | ? | 6 | ? |
![]() | ? | 10 | ? | 8 | 6 | 14 | 354 | ? | ? | 15 | 14 | ? |
![]() | ? | 28 | ? | 40 | 15 | 10 | 54 | ? | ? | ? | 4 | ? |
![]() | 6 | 7 | 8 | 5 | 6 | 10 | 10 | 24 | 72 | 4 | 8 | ? |
![]() | 5 | 5 | 4 | 10 | 6 | 6 | 10 | ? | ? | ? | 10 | ? |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | • | 6 | 16 | 4 | 3 | 4 | 4 | 16 | 8 | 4 | 7 | 4 | 56 | 24 | 5 | 4 | 8 | 4 | 22 | 10 | 30 | 81 | 6 | 10 |
![]() | 6 | • | 8 | 7 | 6 | 10 | 5 | 4 | 14 | 6 | 10 | 2 | 14 | 10 | 6 | 6 | 10 | 6 | 4 | 14 | 18 | 378 | 6 | 30 |
![]() | 16 | 8 | • | ? | 6 | 27 | 14 | ? | 4 | 4 | 10 | 4 | 2 | 4 | 168 | 4 | 14 | 32 | 16 | ? | ? | ? | 6 | ? |
![]() | 4 | 7 | ? | • | 12 | 6 | 5 | 378 | 24 | 34 | 378 | 2 | 168 | 10 | 378 | 5 | 34 | 66 | 16 | ? | ? | ? | 24 | ? |
![]() | 3 | 6 | 6 | 12 | • | 6 | 6 | ? | 6 | ? | 6 | 4 | ? | 6 | 6 | 18 | 4 | 16 | 16 | 8 | 6 | ? | 24 | ? |
![]() | 4 | 10 | 27 | 6 | 6 | • | 4 | ? | ? | 4 | ? | ? | ? | ? | 4 | 56 | 4 | 6 | ? | 168 | 168 | ? | 6 | 2 |
![]() | 4 | 5 | 14 | 5 | 6 | 4 | • | ? | 4 | 4 | ? | 4 | ? | 4 | 16 | 2 | ? | 24 | 4 | 10 | 42 | ? | 10 | 6 |
![]() | 16 | 4 | ? | 378 | ? | ? | ? | • | ? | 6 | ? | 2 | ? | 4 | ? | 42 | ? | 672 | ? | ? | ? | ? | 18 | ? |
![]() | 8 | 14 | 4 | 24 | 6 | ? | 4 | ? | • | 4 | ? | 4 | ? | ? | 16 | 4 | 16 | 378 | 6 | 672 | ? | ? | 24 | 54 |
![]() | 4 | 6 | 4 | 34 | ? | 4 | 4 | 6 | 4 | • | 4 | ? | ? | 30 | 24 | 64 | 4 | ? | ? | 42 | 16 | ? | 16 | ? |
![]() | 7 | 10 | 10 | 378 | 6 | ? | ? | ? | ? | 4 | • | ? | 4 | ? | ? | 4 | ? | ? | ? | ? | ? | ? | 42 | ? |
![]() | 4 | 2 | 4 | 2 | 4 | ? | 4 | 2 | 4 | ? | ? | • | ? | ? | 4 | 4 | ? | 4 | ? | 4 | 5 | ? | 4 | 4 |
![]() | 56 | 14 | 2 | 168 | ? | ? | ? | ? | ? | ? | 4 | ? | • | 4 | 4 | ? | 10 | ? | ? | ? | 4 | ? | 10 | ? |
![]() | 24 | 10 | 4 | 10 | 6 | ? | 4 | 4 | ? | 30 | ? | ? | 4 | • | ? | 58 | 34 | ? | ? | ? | ? | ? | 42 | 12 |
![]() | 5 | 6 | 168 | 378 | 6 | 4 | 16 | ? | 16 | 24 | ? | 4 | 4 | ? | • | 3 | ? | ? | 74 | ? | ? | ? | 42 | ? |
![]() | 4 | 6 | 4 | 5 | 18 | 56 | 2 | 42 | 4 | 64 | 4 | 4 | ? | 58 | 3 | • | 4 | 168 | 18 | 10 | 12 | ? | 10 | ? |
![]() | 8 | 10 | 14 | 34 | 4 | 4 | ? | ? | 16 | 4 | ? | ? | 10 | 34 | ? | 4 | • | ? | ? | ? | ? | ? | 168 | ? |
![]() | 4 | 6 | 32 | 66 | 16 | 6 | 24 | 672 | 378 | ? | ? | 4 | ? | ? | ? | 168 | ? | • | 42 | ? | ? | ? | ? | ? |
![]() | 22 | 4 | 16 | 16 | 16 | ? | 4 | ? | 6 | ? | ? | ? | ? | ? | 74 | 18 | ? | 42 | • | ? | ? | ? | 30 | ? |
![]() | 10 | 14 | ? | ? | 8 | 168 | 10 | ? | 672 | 42 | ? | 4 | ? | ? | ? | 10 | ? | ? | ? | • | ? | ? | 168 | ? |
![]() | 30 | 18 | ? | ? | 6 | 168 | 42 | ? | ? | 16 | ? | 5 | 4 | ? | ? | 12 | ? | ? | ? | ? | • | ? | 42 | ? |
![]() | 81 | 378 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | • | ? | ? |
![]() | 6 | 6 | 6 | 24 | 24 | 6 | 10 | 18 | 24 | 16 | 42 | 4 | 10 | 42 | 42 | 10 | 168 | ? | 30 | 168 | 42 | ? | • | ? |
![]() | 10 | 30 | ? | ? | ? | 2 | 6 | ? | 54 | ? | ? | 4 | ? | 12 | ? | ? | ? | ? | ? | ? | ? | ? | ? | • |
Last revised 2025-04-09.