Holeless Pentomino Odd Pairs

Introduction

Livio Zucca's Pentomino Odd Pairs studies the problem of finding a compatibility figure for two pentominoes with an odd number of tiles. Here I show holeless variants for pentomino odd pairs. The green cells represent holeless solutions that already appear on Pentomino Odd Pairs.

FILNPTUVWXYZ
F * 13 3 5 3 7 9 9 5 19 3 7
I 13 * 9 11 5 ? ? 19 25 × 9 ?
L 3 9 * 5 3 9 11 5 5 ? 3 7
N 5 11 5 * 3 7 7 3 5 33 3 9
P 3 5 3 3 * 3 7 3 3 11 3 3
T 7 ? 9 7 3 * ? ? 67 ? 5 ?
U 9 ? 11 7 7 ? * ? 19 × 19 ?
V 9 19 5 3 3 ? ? * 21 × 7 25
W 5 25 5 5 3 67 19 21 * × 7 15
X 19 × ? 33 11 ? × × × * 25 ×
Y 3 9 3 3 3 5 19 7 7 25 * 7
Z 7 ? 7 9 3 ? ? 25 15 × 7 *

5F+5I5F+5L5F+5N5F+5P5F+5T5F+5U
5F+5V5F+5W5F+5X5F+5Y5F+5Z5I+5L
5I+5N5I+5P5I+5T5I+5U5I+5V5I+5W
5I+5X5I+5Y5I+5Z5L+5N5L+5P5L+5T
5L+5U5L+5V5L+5W5L+5X5L+5Y5L+5Z
5N+5P5N+5T5N+5U5N+5V5N+5W5N+5X
5N+5Y5N+5Z5P+5T5P+5U5P+5V5P+5W
5P+5X5P+5Y5P+5Z5T+5U5T+5V5T+5W
5T+5X5T+5Y5T+5Z5U+5V5U+5W5U+5X
5U+5Y5U+5Z5V+5W5V+5X5V+5Y5V+5Z
5W+5X5W+5Y5W+5Z5X+5Y5X+5Z5Y+5Z

Last revised 2022-04-07.


Back to Pairwise Compatibility < Polyform Compatibility < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]