Two pentapennies are compatible if there is a polypenny that can be completely tiled by either. Here I show minimal known compatibility figures for pairs of pentapennies.
If you find a smaller solution or solve any of the unsolved cases, please let me know.
For enumeration of polypennies see Catalogue of Polypennies.
A | D | I | K | M | O | P | Q | R | T | V | X | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | * | 6 | 2 | 4 | 4 | ? | 2 | 6 | 3 | 3 | 2 | ? | 2 |
D | 6 | * | 2 | 3 | 6 | ? | 6 | 2 | 2 | 4 | 2 | ? | 2 |
I | 2 | 2 | * | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 2 |
K | 4 | 3 | 3 | * | 2 | ? | ? | 2 | 2 | 3 | 2 | ? | 2 |
M | 4 | 6 | 2 | 2 | * | 7 | 4 | 2 | 4 | 2 | 2 | 2 | 2 |
O | ? | ? | 2 | ? | 7 | * | 7 | 7 | 7 | 4 | 4 | ? | 4 |
P | 2 | 6 | 2 | ? | 4 | 7 | * | 4 | 3 | 2 | 2 | 4 | 2 |
Q | 6 | 2 | 2 | 2 | 2 | 7 | 4 | * | 2 | 2 | 2 | ? | 2 |
R | 3 | 2 | 2 | 2 | 4 | 7 | 3 | 2 | * | 2 | 2 | ? | 2 |
T | 3 | 4 | 2 | 3 | 2 | 4 | 2 | 2 | 2 | * | 2 | 2 | 2 |
V | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | * | ? | 2 |
X | ? | ? | 6 | ? | 2 | ? | 4 | ? | ? | 2 | ? | * | ? |
Y | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | ? | * |
5A—5D | 5A—5I | 5A—5K | 5A—5M |
---|---|---|---|
5A—5O | 5A—5P | 5A—5Q | 5A—5R |
5A—5T | 5A—5V | 5A—5X | 5A—5Y |
5D—5I | 5D—5K | 5D—5M | 5D—5O |
5D—5P | 5D—5Q | 5D—5R | 5D—5T |
5D—5V | 5D—5X | 5D—5Y | 5I—5K |
5I—5M | 5I—5O | 5I—5P | 5I—5Q |
5I—5R | 5I—5T | 5I—5V | 5I—5X |
5I—5Y | 5K—5M | 5K—5O | 5K—5P |
5K—5Q | 5K—5R | 5K—5T | 5K—5V |
5K—5X | 5K—5Y | 5M—5O | 5M—5P |
5M—5Q | 5M—5R | 5M—5T | 5M—5V |
5M—5X | 5M—5Y | 5O—5P | 5O—5Q |
5O—5R | 5O—5T | 5O—5V | 5O—5X |
5O—5Y | 5P—5Q | 5P—5R | 5P—5T |
5P—5V | 5P—5X | 5P—5Y | 5Q—5R |
5Q—5T | 5Q—5V | 5Q—5X | 5Q—5Y |
5R—5T | 5R—5V | 5R—5X | 5R—5Y |
5T—5V | 5T—5X | 5T—5Y | 5V—5X |
5V—5Y | 5X—5Y | ||
Last revised 2020-04-01.