It has long been known that only four pentominoes can tile rectangles:

For other rectangles that these pentominoes tile, see Mike Reid's Rectifiable Polyomino Page.

On Scaled Two-Pentomino Rectangles I study the related problem of tiling some rectangle with two pentominoes at various sizes. Here I study the corresponding problem for three pentominoes in various sizes. If you find a solution with fewer tiles than one of mine, please write!

Bryce Herdt has already improved on one of my solutions. Carl and Johann Schwenke have improved on many of my solutions.

See also Scaled Three-Pentomino Balanced Rectangles.

5F+5I+5L 5 | 5F+5I+5N 10 | 5F+5I+5P 6 | 5F+5I+5T 11 | 5F+5I+5U 5 |
---|---|---|---|---|

5F+5I+5V 5 | 5F+5I+5W 12 | 5F+5I+5X 16 | 5F+5I+5Y 6 | 5F+5I+5Z 11 |

5F+5L+5N 6 | 5F+5L+5P 4 | 5F+5L+5T 6 | 5F+5L+5U 5 | 5F+5L+5V 6 |

5F+5L+5W 6 | 5F+5L+5X 9 | 5F+5L+5Y 5 | 5F+5L+5Z 7 | 5F+5N+5P 6 |

5F+5N+5T 11 | 5F+5N+5U 6 | 5F+5N+5V 6 | 5F+5N+5W × | 5F+5N+5X × |

5F+5N+5Y 7 | 5F+5N+5Z × | 5F+5P+5T 6 | 5F+5P+5U 3 | 5F+5P+5V 4 |

5F+5P+5W 8 | 5F+5P+5X 9 | 5F+5P+5Y 5 | 5F+5P+5Z 6 | 5F+5T+5U 9 |

5F+5T+5V 11 | 5F+5T+5W 16 | 5F+5T+5X × | 5F+5T+5Y 5 | 5F+5T+5Z × |

5F+5U+5V 6 | 5F+5U+5W 6 | 5F+5U+5X 9 | 5F+5U+5Y 6 | 5F+5U+5Z 9 |

5F+5V+5W 12 | 5F+5V+5X 13 | 5F+5V+5Y 4 | 5F+5V+5Z 7 | 5F+5W+5X × |

5F+5W+5Y 8 | 5F+5W+5Z × | 5F+5X+5Y 6 | 5F+5X+5Z × | 5F+5Y+5Z 6 |

5I+5L+5N 5 | 5I+5L+5P 4 | 5I+5L+5T 5 | 5I+5L+5U 5 | 5I+5L+5V 4 |

5I+5L+5W 5 | 5I+5L+5X 6 | 5I+5L+5Y 6 | 5I+5L+5Z 7 | 5I+5N+5P 5 |

5I+5N+5T 6 | 5I+5N+5U 5 | 5I+5N+5V 5 | 5I+5N+5W 10 | 5I+5N+5X 16 |

5I+5N+5Y 6 | 5I+5N+5Z 10 | 5I+5P+5T 4 | 5I+5P+5U 5 | 5I+5P+5V 4 |

5I+5P+5W 5 | 5I+5P+5X 6 | 5I+5P+5Y 4 | 5I+5P+5Z 4 | 5I+5T+5U 9 |

5I+5T+5V 6 | 5I+5T+5W 7 | 5I+5T+5X 13 | 5I+5T+5Y 5 | 5I+5T+5Z 10 |

5I+5U+5V 4 | 5I+5U+5W 12 | 5I+5U+5X 4 | 5I+5U+5Y 5 | 5I+5U+5Z 7 |

5I+5V+5W 9 | 5I+5V+5X 11 | 5I+5V+5Y 6 | 5I+5V+5Z 4 | 5I+5W+5X 15 |

5I+5W+5Y 6 | 5I+5W+5Z 10 | 5I+5X+5Y 6 | 5I+5X+5Z 13 | 5I+5Y+5Z 6 |

5L+5N+5P 4 | 5L+5N+5T 6 | 5L+5N+5U 5 | 5L+5N+5V 3 | 5L+5N+5W 6 |

5L+5N+5X 7 | 5L+5N+5Y 4 | 5L+5N+5Z 5 | 5L+5P+5T 4 | 5L+5P+5U 4 |

5L+5P+5V 3 | 5L+5P+5W 5 | 5L+5P+5X 6 | 5L+5P+5Y 4 | 5L+5P+5Z 4 |

5L+5T+5U 8 | 5L+5T+5V 6 | 5L+5T+5W 8 | 5L+5T+5X 6 | 5L+5T+5Y 3 |

5L+5T+5Z 5 | 5L+5U+5V 5 | 5L+5U+5W 6 | 5L+5U+5X 4 | 5L+5U+5Y 4 |

5L+5U+5Z 6 | 5L+5V+5W 8 | 5L+5V+5X 6 | 5L+5V+5Y 6 | 5L+5V+5Z 5 |

5L+5W+5X 9 | 5L+5W+5Y 6 | 5L+5W+5Z 9 | 5L+5X+5Y 7 | 5L+5X+5Z 9 |

5L+5Y+5Z 5 | 5N+5P+5T 6 | 5N+5P+5U 3 | 5N+5P+5V 4 | 5N+5P+5W 6 |

5N+5P+5X 8 | 5N+5P+5Y 4 | 5N+5P+5Z 6 | 5N+5T+5U 10 | 5N+5T+5V 7 |

5N+5T+5W 10 | 5N+5T+5X 14 | 5N+5T+5Y 5 | 5N+5T+5Z 13 | 5N+5U+5V 6 |

5N+5U+5W 12 | 5N+5U+5X 7 | 5N+5U+5Y 6 | 5N+5U+5Z 6 | 5N+5V+5W 6 |

5N+5V+5X 13 | 5N+5V+5Y 5 | 5N+5V+5Z 6 | 5N+5W+5X × | 5N+5W+5Y 8 |

5N+5W+5Z × | 5N+5X+5Y 8 | 5N+5X+5Z × | 5N+5Y+5Z 7 | 5P+5T+5U 6 |

5P+5T+5V 4 | 5P+5T+5W 6 | 5P+5T+5X 8 | 5P+5T+5Y 4 | 5P+5T+5Z 6 |

5P+5U+5V 3 | 5P+5U+5W 6 | 5P+5U+5X 5 | 5P+5U+5Y 3 | 5P+5U+5Z 5 |

5P+5V+5W 6 | 5P+5V+5X 6 | 5P+5V+5Y 4 | 5P+5V+5Z 4 | 5P+5W+5X 7 |

5P+5W+5Y 5 | 5P+5W+5Z 6 | 5P+5X+5Y 6 | 5P+5X+5Z 8 | 5P+5Y+5Z 4 |

5T+5U+5V 6 | 5T+5U+5W 16 | 5T+5U+5X 18 | 5T+5U+5Y 4 | 5T+5U+5Z 12 |

5T+5V+5W 11 | 5T+5V+5X 18 | 5T+5V+5Y 7 | 5T+5V+5Z 10 | 5T+5W+5X 20 |

5T+5W+5Y 6 | 5T+5W+5Z 16 | 5T+5X+5Y 8 | 5T+5X+5Z × | 5T+5Y+5Z 7 |

5U+5V+5W 14 | 5U+5V+5X 6 | 5U+5V+5Y 6 | 5U+5V+5Z 6 | 5U+5W+5X 11 |

5U+5W+5Y 6 | 5U+5W+5Z 12 | 5U+5X+5Y 6 | 5U+5X+5Z 9 | 5U+5Y+5Z 6 |

5V+5W+5X 37 | 5V+5W+5Y 8 | 5V+5W+5Z 12 | 5V+5X+5Y 6 | 5V+5X+5Z 9 |

5V+5Y+5Z 4 | 5W+5X+5Y 9 | 5W+5X+5Z × | 5W+5Y+5Z 8 | 5X+5Y+5Z 9 |

Last revised 2024-03-26.

Back to Polyform Tiling < Polyform Curiosities

Col. George Sicherman [ HOME | MAIL ]