Pentomino Pair 4-Rotary Oddities
A polyomino oddity
is a symmetrical figure formed by an odd number of copies of
a polyomino.
Symmetrical figures can also be formed with copies of two
different pentominoes.
Here are the smallest known 4-rotary oddities
for the 66 pairs of pentominoes.
See also
| F | I | L | N | P | T | U | V | W | X | Y | Z |
F | * | 9 | 9 | 9 | 5 | 5 | 9 | 13 | 5 | 5 | 5 | 5 |
I | 9 | * | 5 | 9 | 5 | 9 | 9 | 9 | 9 | 5 | 5 | 9 |
L | 9 | 5 | * | 9 | 5 | 9 | 9 | 9 | 13 | 5 | 9 | 9 |
N | 9 | 9 | 9 | * | 9 | 9 | 9 | 13 | 9 | 5 | 9 | 13 |
P | 5 | 5 | 5 | 9 | * | 5 | 9 | 5 | 9 | 5 | 5 | 5 |
T | 5 | 9 | 9 | 9 | 5 | * | 21 | 21 | 17 | 5 | 9 | 13 |
U | 9 | 9 | 9 | 9 | 9 | 21 | * | 17 | 17 | 5 | 9 | 13 |
V | 13 | 9 | 9 | 13 | 5 | 21 | 17 | * | 17 | 5 | 5 | 9 |
W | 5 | 9 | 13 | 9 | 9 | 17 | 17 | 17 | * | 5 | 9 | 13 |
X | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | * | 5 | 5 |
Y | 5 | 5 | 9 | 9 | 5 | 9 | 9 | 5 | 9 | 5 | * | 5 |
Z | 5 | 9 | 9 | 13 | 5 | 13 | 13 | 9 | 13 | 5 | 5 | * |
5 Tiles
9 Tiles
13 Tiles
17 Tiles
21 Tiles
Solutions shown above that are holeless are not shown here.
13 Tiles
17 Tiles
21 Tiles
33 Tiles
Last revised 2024-04-28.
Back to Polyform Oddities
<
Polyform Curiosities
Col. George Sicherman
[ HOME
| MAIL
]