Pentomino Pair Dual Diagonal Oddities
A polyomino oddity
is a symmetrical figure formed by an odd number of copies of
a polyomino.
Symmetrical figures can also be formed with copies of two
different pentominoes.
Here are the smallest known dual-diagonal oddities
for the 66 pairs of pentominoes.
See also
| F | I | L | N | P | T | U | V | W | X | Y | Z |
F | * | 7 | 9 | 7 | 7 | 9 | 7 | 9 | 7 | 5 | 5 | 5 |
I | 7 | * | 5 | 7 | 3 | 5 | 7 | 7 | 9 | 5 | 7 | 7 |
L | 9 | 5 | * | 7 | 5 | 9 | 7 | 7 | 7 | 5 | 9 | 7 |
N | 7 | 7 | 7 | * | 7 | 9 | 13 | 7 | 5 | 5 | 9 | 7 |
P | 7 | 3 | 5 | 7 | * | 5 | 7 | 3 | 5 | 5 | 5 | 5 |
T | 9 | 5 | 9 | 9 | 5 | * | 21 | 9 | 11 | 5 | 9 | 7 |
U | 7 | 7 | 7 | 13 | 7 | 21 | * | 7 | 13 | 5 | 9 | 7 |
V | 9 | 7 | 7 | 7 | 3 | 9 | 7 | * | 5 | 3 | 5 | 7 |
W | 7 | 9 | 7 | 5 | 5 | 11 | 13 | 5 | * | 3 | 9 | 7 |
X | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 3 | * | 5 | 5 |
Y | 5 | 7 | 9 | 9 | 5 | 9 | 9 | 5 | 9 | 5 | * | 5 |
Z | 5 | 7 | 7 | 7 | 5 | 7 | 7 | 7 | 7 | 5 | 5 | * |
3 Tiles
5 Tiles
7 Tiles
9 Tiles
11 Tiles
13 Tiles
21 Tiles
Solutions shown above that are holeless are not shown here.
7 Tiles
9 Tiles
11 Tiles
13 Tiles
15 Tiles
25 Tiles
Last revised 2024-04-27.
Back to Polyform Oddities
<
Polyform Curiosities
Col. George Sicherman
[ HOME
| MAIL
]