Tiling Right Trapezoidal Polyominoes with Three Pentominoes

  • Introduction
  • Nomenclature
  • Table
  • Solutions
  • Introduction

    A pentomino is a figure made of five squares joined edge to edge. There are 12 such figures, not distinguishing reflections and rotations. They were first enumerated and studied by Solomon Golomb.

    Here I study the problem of tiling a polyomino shaped like a right trapezoid with copies of three pentominoes, using at least one of each. Such a polyomino has three straight sides, two of them parallel, and one zigzag side. For this problem, the polyomino may be triangular.

    If you find a smaller solution than one of mine or solve an unsolved case, please write!

    See also Tiling a Right Trapezoidal Polyomino with Two Pentominoes and L Shapes from Three Pentominoes.

    Nomenclature

    I use Solomon W. Golomb's original names for the pentominoes:

    Table

    This table shows the smallest total number of three pentominoes known to be able to tile a trapezoidal polyomino:

    FILFNV 9FUZINU 10IUY 6LPV 5LWZ 8NVW 3PVX 7TXZ
    FIN 9FNWFVW 12INV 6IUZLPW 3LXY 7NVX 20PVY 5TYZ
    FIP 5FNXFVXINW 12IVW 11LPX 6LXZNVY 6PVZ 5UVW 27
    FITFNY 6FVY 10INX 27IVXLPY 3LYZ 7NVZ 6PWX 6UVX
    FIUFNZFVZINY 6IVY 3LPZ 6NPT 5NWXPWY 3UVY 10
    FIVFPT 5FWXINZ 18IVZLTUNPU 5NWY 4PWZ 3UVZ
    FIW 12FPU 3FWY 6IPT 5IWX 21LTVNPV 5NWZPXY 5UWX
    FIXFPV 4FWZIPU 5IWY 4LTW 6NPW 5NXY 10PXZ 7UWY 3
    FIY 8FPW 5FXY 15IPV 5IWZ 14LTXNPX 7NXZPYZ 3UWZ
    FIZFPX 7FXZIPW 4IXY 18LTY 6NPY 3NYZ 8TUVUXY 15
    FLN 6FPY 4FYZ 8IPX 5IXZLTZNPZ 5PTU 6TUW 15UXZ
    FLP 4FPZ 5ILN 3IPY 3IYZ 14LUVNTU 9PTV 6TUXUYZ 9
    FLTFTUILP 5IPZ 5LNP 3LUW 4NTV 9PTW 3TUY 10VWX 35
    FLUFTVILTITULNT 7LUXNTW 6PTX 7TUZVWY 5
    FLVFTW 15ILUITVLNU 6LUY 6NTX 33PTY 5TVW 10VWZ 11
    FLW 4FTXILVITW 7LNV 6LUZNTY 6PTZ 6TVXVXY 27
    FLXFTY 6ILW 3ITXLNW 4LVW 6NTZ 20PUV 6TVY 15VXZ
    FLY 6FTZILXITY 10LNX 10LVXNUV 9PUW 5TVZVYZ 3
    FLZFUVILY 3ITZLNY 3LVY 6NUW 14PUX 6TWX 18WXY 7
    FNP 5FUW 3ILZIUVLNZ 6LVZNUXPUY 3TWY 3WXZ
    FNT 15FUXINP 5IUW 18LPT 5LWX 7NUY 6PUZ 5TWZ 11WYZ 4
    FNUFUY 6INT 3IUXLPU 6LWY 6NUZPVW 3TXYXYZ

    Solutions

    So far as I know, these solutions have the fewest possible tiles. They are not necessarily uniquely minimal.

    3 Tiles

    4 Tiles

    5 Tiles

    6 Tiles

    7 Tiles

    8 Tiles

    9 Tiles

    10 Tiles

    11 Tiles

    12 Tiles

    14 Tiles

    15 Tiles

    18 Tiles

    20 Tiles

    21 Tiles

    27 Tiles

    33 Tiles

    35 Tiles

    Last revised 2024-01-01.


    Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]