# Hexomino Pairs Tiling a Rectangle with Two Neighboring Corner Cells Removed

• Introduction
• Enumeration
• Table
• Solutions
• ## Introduction

A hexomino is a plane figure made of six squares joined edge to edge. There are 35 such figures, not distinguishing reflections and rotations.

The problem of arranging copies of a polyomino to form a rectangle has been studied for a long time. Here I study the problem of arranging copies of two hexominoes to form a rectangle with two neighboring corner cells removed.

If you find a smaller solution or solve an unsolved case, please write.

• Hexomino Pairs Tiling a Rectangle with One Corner Cell Removed
• Hexomino Pairs Tiling a Rectangle with Two Opposite Corner Cells Removed
• Hexomino Pairs Tiling a Rectangle with Three Corner Cells Removed
• Hexomino Pairs Tiling a Rectangle with the Four Corner Cells Removed
• Pentomino Pairs Tiling a Rectangle with Two Neighboring Corner Cells Removed

## Table of Results

This table shows the smallest total number of copies of two hexominoes known to be able to tile a rectangle with two neighboring corner cells removed, using at least one of each hexomino.

1234567891011121314151617181920212223242526272829303132333435
1*933516516301643165395431643301330?853010333518551330??
29*9881652181316137587131317187161371616162375718132328
339*213589331641401616328161637382983849131713?5818?54451??
4382*8588??43??83?833???1733??28???1693????
558138*?8?51??13313?13531343?345163331717589517???
616165858?*13????533316??382853?16??17??????37????
75598813*858168839813883078831651398839301818
8162133???8*????4816??????44???????28??????
930816?51?5?*40??175?16????13???????302153????
1016134143??8?40*??165?30?37??28??13????8?945???
11431640???16???*?1816?30????21???????165?????
12161316?13538????*2330??????23???????402313????
135716833384817161823*31828231830281616281828282833282316169288
14353313163165516303*231818169516?518234533333793051
159828???9?????182*8????944??3???17?3????
165716813?8?163030?2838*??441616??13????16?16851??
1743131633533813?????2318??*???13??????????3??3
18161337?13288??37??1818???*??38?????????33????
19431738?43538?????3016?44??*?37???????30??????
20301829???30?????289?16???*40??????????????
211378173167441328212316591613383740*2837851283740282882884453
223016383345?8?????161644?????28*??????16??44???
23?1349?16?8?????28???????37?*????????????
248713?3173??13??185?13????8??*30???1838????
25516172833?16?????28183?????51??30*?????3????
26301613?17?5?????2823??????28????*??30??????
2710316??17?13?????2845??????37?????*???29????
28332358?5?9?????3333??????40??????*??5????
295718168?82830816402831716??30?2816?18?30??*??????
30185?99?8?21?523233??????28??3?????*?????
3157535373?539?13163316?33??8??83?295??*????
325131844?17?9??45??167?83???2844?????????*???
33301351???30?????99?51????8???????????*??
34?23????18?????2830??????44????????????*?
35?28????18?????851??3???53?????????????*
1234567891011121314151617181920212223242526272829303132333435

### 513 Tiles

Last revised 2023-07-07.

Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]