# Hexomino Pairs Tiling a Rectangle with Two Opposite Corner Cells Removed

• Introduction
• Enumeration
• Table
• Solutions
• ## Introduction

A hexomino is a plane figure made of six squares joined edge to edge. There are 35 such figures, not distinguishing reflections and rotations.

The problem of arranging copies of a polyomino to form a rectangle has been studied for a long time. Here I study the problem of arranging copies of two hexominoes to form a rectangle with two opposite corner cells removed.

If you find a smaller solution or solve an unsolved case, please write.

See also

• Hexomino Pairs Tiling a Rectangle with One Corner Cell Removed
• Hexomino Pairs Tiling a Rectangle with Two Neighboring Corner Cells Removed
• Hexomino Pairs Tiling a Rectangle with Three Corner Cells Removed
• Hexomino Pairs Tiling a Rectangle with the Four Corner Cells Removed
• Pentomino Pairs Tiling a Rectangle with Two Opposite Corner Cells Removed

## Table of Results

This table shows the smallest total number of copies of two hexominoes known to be able to tile a rectangle with two opposite corner cells removed, using at least one of each hexomino.

1234567891011121314151617181920212223242526272829303132333435
1*944816816301643168438431643171630?9163013337830756917??
29*9916168161616131689581616131881616816916238168189916
349*41644898301616164316830131716283081691644165683330?82
4494*1656831656?88438388??1616?318???16168????
58161616*563?996?13318?3301628?844881616281138316???
61616445656*8?56??44303051?162830?8103?8?100??96?28158???
7888838*39813888513168162888881616171613888281316
8161693??3*18???930??????51???????8??????
93016816956918*8??169308???387244?????5612856????
101616305696?8?8*?621830566212030??18??8????8?762???
11431316???13???*?2830?8????830??????16??????
12161616813448??62?*2845??30???16???????40308????
13881683308916182828*1382816182828816301830282840232818168288
1449441830830930304513*381825169830828403862441728916164058
153533?515?3056??83*8????1362?85??38163????
16881683?13?8628?2888*38?40316??8????16?16844??
174316838301616??120?301618?38*158??9????62120????16?3?
18161630816288??30??1825??158*??29????????10818????
19431313?283016?????2816?40??*?21???????16??????
20171817???28?3???289?3???*9??????????????
21168161688851818816881316929219*2840844184425281883086143
2230162816441038?72?30?163062?????28*??????16160?18???
23?1630?8?8?44???3082??????40?*????????????
249883888??8??18888????8??*16???18?8????
251616161816?16?????30405?????44??16*?????16????
263099?1610016?????2838??62???18????*??8??????
271331616?28?17?????2862??120???44?????*???30????
28372344?11?16?????40443?????25??????*??3????
2988161639613856816402317816??16?2816?18?8??*??????
30301656168?8?128??30282816??108??18160???????*?????
3178883288?567?8189316?18??8??816?303??*????
325691833?161588??62??1616?816???3018?????????*???
3317930???28?????816?44????8???????????*??
34?9????13?????2840??3???61????????????*?
35?1682???16?????858??????43?????????????*
1234567891011121314151617181920212223242526272829303132333435

### 569 Tiles

Last revised 2023-07-05.

Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]