Scaled Hexomino Pair Rectangles

Introduction

Here are the smallest known rectangles that can be formed by every pair of hexominoes, using at least one of each, and letting the hexominoes appear at any scale.

If you find a solution with fewer tiles or solve an unsolved case, please write.

Carl Schwenke and Johann Schwenke found the tilings marked with an asterisk (*).

See also Hexomino Pair Rectangles.

Hexomino Numbers

Table of Results

Of 595 possible pairs of hexominoes, 376 are known to be able to tile a rectangle with scaling.

 1234567891011121314151617181920212223242526272829303132333435
1 3664737117107359310811166109941010534211131512
2 34441049478745441010108610104541154638101112
3 642161261220102066612446814441464201030624416449664
4 64214246××42××68×46×××1230××16×××466×?××
5 4464735861444584846124844661134726111016
6 710122473?1650?211214941361414?452814?96??6?516496??
7 34663338394457484694754576545369710
8 7912×5?3×400××1317×13?×××24?××?×××4?5×?××
9 11420×8168×22××126×12?×××6?××?×××12328×?××
10 771042650340022?1610444101026??1250?8??96?69480???
11 10820×14?9××?×412×1214×××1814××?×××18?8×?××
12 776×4214××16×108×632×××16106××?×××856×?××
13 3466412413121041044461414146419141291217473410910
14 55685145176412846310111254241471518131732510161410
15 9412×8947××44××464?×××1048××14×××4?7×?××
16 3444413413121012643411141038151269127134738141120
17 101046868??1021432610?11120100?4????64168?3675414??
18 8106×4144××6××1411×14120××18?××?×××11128×?××
19 11108×6146××?××1412×10100××12?××?×××41210×?××
20 16814×12?9××?××145×3?××12?××?×××11?13×?××
21 6641244424612181664108418121210241028222424210618102836
22 10104308527??50141064244815????10??????14112728???
23 91014×485××?××1914×12?×××24?×?×××8709×?××
24 946×4144××8××147×6?×××10?×22×××1247×?××
25 454166?5?????1215149????28??22???1465????
26 10420×6967××?××918×1264×××22?××?××16228×?××
27 101110×11?6××96××1213×7168×××24?××?××16128×?××
28 5530×3?5××?××1717×13?×××24?××?××11125×?××
29 34644644126188434431141121481214161611332524324
30 462467?5?329?572?761212?1011270462212123410???
31 23462535848635737810136797588534991111
32 11816×61646××80××410×854×××1828××?×××25109?××
33 131044?11969?????1016?1414???10???????24?9???
34 151196×10?7××?××914×11?×××28?××?×××3?11×?×
35 121264×16?10××?××1010×20?×××36?××?×××24?11×?×
 1234567891011121314151617181920212223242526272829303132333435

2 Tiles

3 Tiles

4 Tiles

5 Tiles

6 Tiles

7 Tiles

8 Tiles

9 Tiles

10 Tiles

11 Tiles

12 Tiles

13 Tiles

14 Tiles

15 Tiles

16 Tiles

17 Tiles

18 Tiles

19 Tiles

20 Tiles

21 Tiles

22 Tiles

24 Tiles

25 Tiles

28 Tiles

30 Tiles

32 Tiles

36 Tiles

42 Tiles

44 Tiles

48 Tiles

50 Tiles

52 Tiles

54 Tiles

64 Tiles

70 Tiles

80 Tiles

94 Tiles

96 Tiles

100 Tiles

102 Tiles

106 Tiles

112 Tiles

120 Tiles

164 Tiles

168 Tiles

400 Tiles

Last revised 2024-03-26.
Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]