Dr. Erich Friedman's Math Magic for September 2004 shows compatibility figures for pairs of pentahexes (and many other polyforms). Here are minimal known compatibility figures for pairs of pentahexes. Joe DeVincentis and Dr. Friedman found many solutions. Dr. Andrejs Cibulis was the first to solve some of the hardest compatibilities.
For compatible pairs of pentahexes with an odd number of tiles, see Pentahex Odd Pairs.
A convenient set of acrylic pentahexes (and smaller polyhexes) is available from Kadon Enterprises as Hexnut.
A | C | D | E | F | H | I | J | K | L | N | P | Q | R | S | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | * | 4 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 6 | 6 | 6 | 2 | 8 | 3 | 2 | 3 |
C | 4 | * | 3 | 3 | 2 | 3 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 30 | 3 | 2 |
D | 2 | 3 | * | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 2 | 3 | 2 | 3 | 2 | 2 |
E | 2 | 3 | 3 | * | 3 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 18 | 2 | 2 | 2 | 2 |
F | 2 | 2 | 3 | 3 | * | 2 | 9 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 6 | 2 | 6 | 6 | 2 |
H | 2 | 3 | 3 | 2 | 2 | * | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 3 | 11 | 2 | 3 | 6 | 2 |
I | 3 | 9 | 2 | 2 | 9 | 10 | * | 3 | 8 | 2 | 3 | 2 | 8 | 3 | 5 | ? | 18 | 3 | 5 | 35 | 2 | 2 |
J | 2 | 2 | 2 | 4 | 2 | 2 | 3 | * | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 2 |
K | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 2 | * | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 |
L | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | * | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 2 | 3 |
N | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | * | 2 | 3 | 2 | 3 | 3 | 2 | 2 | 2 | 3 | 2 | 2 |
P | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | * | 2 | 2 | 3 | 6 | 2 | 2 | 2 | 2 | 2 | 2 |
Q | 3 | 2 | 2 | 2 | 3 | 2 | 8 | 2 | 2 | 2 | 3 | 2 | * | 2 | 2 | 2 | 6 | 4 | 2 | 2 | 2 | 2 |
R | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | * | 2 | 2 | 3 | 2 | 4 | 2 | 2 | 2 |
S | 6 | 2 | 2 | 2 | 2 | 2 | 5 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | * | 2 | 2 | 3 | 4 | 15 | 2 | 2 |
T | 6 | 2 | 6 | 3 | 2 | 2 | ? | 3 | 2 | 2 | 3 | 6 | 2 | 2 | 2 | * | 3 | 2 | 6 | 60 | 2 | 2 |
U | 6 | 3 | 2 | 3 | 2 | 3 | 18 | 2 | 3 | 2 | 2 | 2 | 6 | 3 | 2 | 3 | * | 6 | 2 | 78 | 6 | 2 |
V | 2 | 2 | 3 | 18 | 6 | 11 | 3 | 2 | 3 | 2 | 2 | 2 | 4 | 2 | 3 | 2 | 6 | * | 10 | 24 | 2 | 2 |
W | 8 | 3 | 2 | 2 | 2 | 2 | 5 | 3 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 2 | 10 | * | 6 | 6 | 2 |
X | 3 | 30 | 3 | 2 | 6 | 3 | 35 | 3 | 2 | 8 | 3 | 2 | 2 | 2 | 15 | 60 | 78 | 24 | 6 | * | 2 | 4 |
Y | 2 | 3 | 2 | 2 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 2 | 6 | 2 | * | 2 |
Z | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | * |
A | C | D | E | F | H | I | J | K | L | N | P | Q | R | S | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | * | ? | 2 | 2 | 2 | 2 | 9 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 12 | ? | ? | 6 | 8 | 3 | 2 | 4 |
C | ? | * | 14 | 10 | 2 | 9 | 10 | 2 | 3 | 2 | 2 | 3 | 9 | 2 | 2 | 2 | 3 | 6 | 3 | ? | 10 | 3 |
D | 2 | 14 | * | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ? | 2 | 3 | 2 | 3 | 2 | 2 |
E | 2 | 10 | 3 | * | 3 | 2 | 2 | 8 | 2 | 3 | 2 | 2 | 2 | 2 | 8 | ? | ? | 18 | 2 | 2 | 2 | 2 |
F | 2 | 2 | 3 | 3 | * | 3 | 10 | 2 | 3 | 2 | 2 | 2 | 3 | 2 | 3 | ? | 2 | 12 | 2 | 6 | 8 | 2 |
H | 2 | 9 | 3 | 2 | 3 | * | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 8 | 2 | 3 | 16 | 2 | 3 | 6 | 2 |
I | 9 | 10 | 2 | 2 | 10 | 10 | * | 6 | 10 | 2 | 3 | 2 | 8 | 8 | 5 | ? | ? | 5 | 5 | ? | 2 | 2 |
J | 2 | 2 | 2 | 8 | 2 | 2 | 6 | * | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 12 | 3 | 2 | 2 |
K | 2 | 3 | 2 | 2 | 3 | 2 | 10 | 2 | * | 2 | 2 | 2 | 2 | 2 | 2 | 15 | 3 | 3 | 2 | 2 | 2 | 2 |
L | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | * | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 8 | 2 | 3 |
N | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | * | 2 | 3 | 3 | 3 | 22 | 2 | 4 | 2 | 3 | 2 | 2 |
P | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | * | 2 | 2 | 3 | ? | 2 | 2 | 2 | 2 | 2 | 2 |
Q | 3 | 9 | 2 | 2 | 3 | 2 | 8 | 2 | 2 | 2 | 3 | 2 | * | 2 | 2 | 2 | 6 | 4 | 2 | 2 | 2 | 4 |
R | 2 | 2 | 2 | 2 | 2 | 3 | 8 | 3 | 2 | 2 | 3 | 2 | 2 | * | 5 | 2 | 3 | 2 | 6 | 4 | 2 | 2 |
S | 12 | 2 | 2 | 8 | 3 | 8 | 5 | 2 | 2 | 2 | 3 | 3 | 2 | 5 | * | ? | 2 | 3 | 14 | 115 | 2 | 2 |
T | ? | 2 | ? | ? | ? | 2 | ? | 3 | 15 | 2 | 22 | ? | 2 | 2 | ? | * | 3 | 2 | ? | ? | 2 | ? |
U | ? | 3 | 2 | ? | 2 | 3 | ? | 2 | 3 | 4 | 2 | 2 | 6 | 3 | 2 | 3 | * | 10 | ? | ? | 6 | 2 |
V | 6 | 6 | 3 | 18 | 12 | 16 | 5 | 2 | 3 | 2 | 4 | 2 | 4 | 2 | 3 | 2 | 10 | * | 10 | ? | 2 | 2 |
W | 8 | 3 | 2 | 2 | 2 | 2 | 5 | 12 | 2 | 2 | 2 | 2 | 2 | 6 | 14 | ? | ? | 10 | * | 6 | 6 | 2 |
X | 3 | ? | 3 | 2 | 6 | 3 | ? | 3 | 2 | 8 | 3 | 2 | 2 | 4 | 115 | ? | ? | ? | 6 | * | 2 | 4 |
Y | 2 | 10 | 2 | 2 | 8 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 2 | 6 | 2 | * | 2 |
Z | 4 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 4 | 2 | 2 | ? | 2 | 2 | 2 | 4 | 2 | * |
Last revised 2023-05-07.