Pentahex Compatibility with Vertical Symmetry

Introduction

A pentahex is a figure made of five regular hexagons joined edge to edge. There are 22 such figures, not distinguishing reflections and rotations.

A set of polyforms is compatible if there is a polyform that can be tiled by each member of the set.

In Pentahex Compatibility I show minimal known compatibilities for every pair of pentahexes. Here I show minimal known compatibilities that have vertical mirror symmetry. (Vertical is relative to the orientation of the pentahex cells. Some researchers turn the cells 90°. With this orientation, the symmetry would be horizontal.)

If you find a smaller solution or solve an unsolved case, please write.

  • Nomenclature
  • Minimal Solutions
  • Nomenclature

    I adopt the nomenclature of Erich Friedman:

    Minimal Solutions

     ACDEFHIJKLNPQRSTUVWXYZ
    A*?2412??246212161266??624?121254
    C?*4????23646666???2????
    D244*1863012334226412?2644846
    E12?18*181218601218612121860??181261244
    F??618*6183030612666??262481836
    H??30126*3066126126123946?224182
    I24?12181830*162461212605460??65?44
    J6236030616*32336661822??129
    K2136312306243*1263126182363061266
    L2144186126212*10624624626642106
    N6626126123610*2663662666106
    P126212612123362*6612?2666106
    Q6661266606122466*6612363612121212
    R6641861254666666*61866182224
    S??1260?396061824361266*3366?301212
    T?????4?18266?12183*186???2
    U6?2?26?2362223663618*?2?126
    V2426186?623066636666?*30?96
    W??412225?66661218??230*12306
    X12?4864824??12426612230???12*224
    Y12?4121818412610101012212?129302*4
    Z54?6443624966661224122666244*

    2 Tiles

    3 Tiles

    4 Tiles

    5 Tiles

    6 Tiles

    9 Tiles

    10 Tiles

    12 Tiles

    16 Tiles

    18 Tiles

    21 Tiles

    24 Tiles

    30 Tiles

    36 Tiles

    39 Tiles

    42 Tiles

    44 Tiles

    48 Tiles

    54 Tiles

    60 Tiles

    Last revised 2023-01-06.


    Back to Pentahex Compatibility < Pairwise Compatibility < Polyform Compatibility < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]