The compatibility problem
is to find a figure that can be tiled with each of a set of polyforms.
Polyomino compatibility has been widely studied since the early 1990s,
and two well-known websites, Poly2ominoes by Jorge Mireles and
Polypolyominoes by
Giovanni Resta, present the results of their authors' systematic searches
for compatibility figures.
The sites include solutions by other researchers, especially Mike Reid.
So far as I know, polyomino compatibility has not been treated in print
since Golomb first raised the issue in 1981,
except in a series of articles called Polyomino Number Theory,
written by Andris Cibulis, Andy Liu, Bob Wainwright,
Uldis Barbans, and Gilbert Lee from 2002 to 2005.
The websites and the articles show only minimal solutions with no restriction. Here I show minimal known pentomino-hexomino compatibility figures without holes. If you find a smaller solution or solve an unsolved case, please let me know.
For pentomino compatibility with or without holes, see Pentomino Compatibility. For hexomino compatibility allowing holes, see Resta's Hexominoes. For hexomino compatibility without holes, see Holeless Hexomino Compatibility.
F | I | L | N | P | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 6 | 5 6 | 5 6 | 10 12 | 5 6 | 20 24 | 45 54 | 5 6 | 5 6 | × | 5 6 | ? |
2 | 5 6 | 5 6 | 5 6 | 5 6 | 5 6 | 10 12 | 10 12 | 10 12 | 5 6 | × | 5 6 | 5 6 |
3 | 5 6 | 10 12 | 5 6 | 5 6 | 5 6 | 10 12 | 10 12 | 10 12 | 10 12 | ? | 5 6 | 20 24 |
4 | 5 6 | 10 12 | 5 6 | 5 6 | 5 6 | ? | 10 12 | 20 24 | 5 6 | × | 5 6 | ? |
5 | 5 6 | 5 6 | 5 6 | 5 6 | 5 6 | 40 48 | 30 36 | 5 6 | 5 6 | × | 10 12 | 20 24 |
6 | 10 12 | 10 12 | 10 12 | 10 12 | 10 12 | ? | ? | 10 12 | ? | × | 5 6 | ? |
7 | 5 6 | 5 6 | 5 6 | 5 6 | 5 6 | 5 6 | 10 12 | 5 6 | 10 12 | × | 5 6 | 10 12 |
8 | 5 6 | 5 6 | 10 12 | 5 6 | 10 12 | ? | ? | 5 6 | 5 6 | × | 5 6 | ? |
9 | 5 6 | 10 12 | 5 6 | 5 6 | 5 6 | 20 24 | 5 6 | 10 12 | 5 6 | × | 10 12 | 10 12 |
10 | 5 6 | ? | 5 6 | 5 6 | 10 12 | 5 6 | ? | 5 6 | ? | × | 5 6 | 10 12 |
11 | 5 6 | 10 12 | 10 12 | 5 6 | 5 6 | 10 12 | ? | 5 6 | 10 12 | × | 10 12 | 20 24 |
12 | 5 6 | 10 12 | 5 6 | 5 6 | 5 6 | 10 12 | 10 12 | 5 6 | 5 6 | 120 144 | 5 6 | 5 6 |
13 | 5 6 | 10 12 | 5 6 | 10 12 | 5 6 | 20 24 | 5 6 | 20 24 | 5 6 | 10 12 | 5 6 | 10 12 |
14 | 10 12 | 10 12 | 5 6 | 10 12 | 5 6 | 10 12 | 5 6 | 10 12 | 10 12 | × | 5 6 | ? |
15 | 5 6 | 5 6 | 5 6 | 5 6 | 5 6 | ? | ? | 10 12 | 10 12 | × | 5 6 | ? |
16 | 10 12 | 10 12 | 5 6 | 10 12 | 5 6 | ? | ? | 10 12 | 10 12 | × | 10 12 | ? |
17 | 5 6 | 20 24 | 5 6 | 5 6 | 10 12 | ? | 5 6 | ? | 10 12 | × | 5 6 | ? |
18 | 5 6 | 10 12 | 10 12 | 5 6 | 5 6 | 10 12 | 30 36 | 90 108 | 5 6 | 20 24 | 5 6 | 5 6 |
19 | 5 6 | 10 12 | 5 6 | 5 6 | 5 6 | 20 24 | 10 12 | 10 12 | 5 6 | 10 12 | 5 6 | 10 12 |
20 | 5 6 | 5 6 | 5 6 | 5 6 | 5 6 | ? | ? | 5 6 | 5 6 | × | 5 6 | 5 6 |
21 | 5 6 | 10 12 | 5 6 | 5 6 | 5 6 | 5 6 | 10 12 | 10 12 | 5 6 | ? | 5 6 | 10 12 |
22 | 5 6 | 10 12 | 10 12 | 5 6 | 5 6 | 5 6 | 5 6 | 50 60 | 10 12 | × | 5 6 | 5 6 |
23 | 5 6 | × | 10 12 | 5 6 | 5 6 | 5 6 | ? | 10 12 | 20 24 | × | 5 6 | 10 12 |
24 | 5 6 | 5 6 | 5 6 | 5 6 | 5 6 | 20 24 | 5 6 | 10 12 | 5 6 | ? | 5 6 | 5 6 |
25 | 30 36 | ? | 5 6 | 20 24 | 5 6 | 5 6 | ? | 10 12 | ? | × | ? | ? |
26 | 5 6 | 10 12 | 5 6 | 10 12 | 5 6 | 5 6 | 10 12 | 10 12 | 5 6 | 10 12 | 5 6 | 10 12 |
27 | 5 6 | ? | 5 6 | 10 12 | 5 6 | ? | ? | ? | 10 12 | × | 5 6 | 5 6 |
28 | 10 12 | × | 5 6 | 15 18 | 5 6 | ? | ? | ? | 5 6 | × | ? | ? |
29 | 10 12 | 10 12 | 5 6 | 5 6 | 5 6 | 10 12 | 5 6 | 5 6 | 20 24 | × | 5 6 | ? |
30 | 20 24 | ? | 5 6 | 5 6 | 5 6 | ? | ? | ? | ? | × | 5 6 | 20 24 |
31 | 20 24 | 5 6 | 5 6 | 10 12 | 5 6 | 20 24 | 20 24 | 10 12 | 20 24 | × | 10 12 | 30 36 |
32 | 5 6 | ? | 5 6 | 5 6 | 5 6 | 40 48 | ? | ? | 5 6 | 10 12 | 5 6 | 5 6 |
33 | 5 6 | 5 6 | 10 12 | 10 12 | 10 12 | ? | 10 12 | ? | 10 12 | × | 5 6 | ? |
34 | 5 6 | × | 30 36 | 10 12 | 10 12 | ? | ? | ? | ? | × | 5 6 | 10 12 |
35 | 5 6 | × | 20 24 | 10 12 | 10 12 | 5 6 | ? | ? | 20 24 | × | 5 6 | ? |
F | I | L | N | P | T | U | V | W | X | Y | Z |
So far as I know, these solutions are minimal. They are not necessarily uniquely minimal.
Last revised 2024-02-01.